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Abstract

Surface registration is a fundamental step in the recon-
struction of three-dimensional objects. This is typically a
two step process where an initial coarse motion estimation
is followed by a refinement. Most coarse registration algo-
rithms exploit some local point descriptor that is intrinsic
to the shape and does not depend on the relative position of
the surfaces. By contrast, refinement techniques iteratively
minimize a distance function measured between pairs of se-
lected neighboring points and are thus strongly dependent
on initial alignment. In this paper we propose a novel tech-
nique that allows to obtain a fine surface registration in a
single step, without the need of an initial motion estimation.
The main idea of our approach is to cast the selection of
correspondences between points on the surfaces in a game-
theoretic framework, where a natural selection process al-
lows mating points that satisfy a mutual rigidity constraint
to thrive, eliminating all the other correspondences. This
process yields a very robust inlier selection scheme that
does not depend on any particular technique for selecting
the initial strategies as it relies only on the global geomet-
ric compatibility between correspondences. The practical
effectiveness of the proposed approach is confirmed by an
extensive set of experiments and comparisons with state-of-
the-art techniques.

1. Introduction

The distinction between coarse and fine surface registra-
tion techniques is mainly related to the different strategies
adopted to find pairs of mating points to be used for the
estimation of the rigid transformation. Almost invariably,
fine registration algorithms exploit an initial guess in or-
der to constrain the search area for compatible mates and
minimize the risk of selecting outliers. On the other hand,
coarse techniques, which cannot rely on any motion esti-
mation, must adopt a mating strategy based on the similar-
ity between surface-point descriptors or resort to random

selection schemes. The tension between the precision re-
quired for fine alignment versus the recall needed for an
initial motion estimation stands as the main hurdle to the
unification of such approaches.

The large majority of currently used fine alignment
methods are modifications to the original ICP proposed by
Zhang [23] and Besl and McKay [3]. These variants gen-
erally differ in the strategies used to sample points from
the surfaces, reject incompatible pairs, or measure error. In
general, the precision and convergence speed of these tech-
niques is highly data-dependent and very sensitive to the
fine-tuning of the model parameters. Several approaches
that combine these variants have been proposed in the liter-
ature in order to overcome these limitations (see [16] for
a comparative review). Some recent variants avoid hard
culling by assigning a probability to each candidate pair
by means of evolutionary techniques [14] or Expectation
Maximization [10]. ICP variants, being iterative algorithms
based on local, step-by-step decisions, are very suscepti-
ble to the presence of local minima. Other fine registration
methods include the well-known method by Chen [6] and
signed distance fields matching [15].

Coarse registration techniques can be roughly classified
into methods that exploit some global property of the sur-
face, such as PCA [8] or Algebraic Surface Model [18],
and methods that use some 3D feature descriptor to find
plausible candidates pairs over the model and data surfaces.
Global techniques are generally very sensitive to occlusion.
Feature-based approaches are more precise and can align
surfaces that exhibit only partial overlap. Nevertheless, the
unavoidable localization error of the feature points prevents
them from obtaining accuracies on par with fine registration
methods. Among the most successful descriptors are Point
Signatures [7] and Spin Images [12]. A completely dif-
ferent coarse registration approach is the RANSAC-based
DARCES [5], which is based on the random extraction of
sets of mates from the surfaces and their validation based on
the accuracy of the estimated transformation. Other recent
methods include [1]; a recent and extensive review of all the
different methods can be found in [17].
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Regardless of the criteria used to obtain pairs of mat-
ing points, the subsequent step in surface registration is
to search for the rigid transformation that minimizes the
squared distance between them. Since many mature tech-
niques are available to do this (for instance [11]), in this pa-
per our effort is toward the matching step itself: specifically
by proposing a novel game-theoretic approach that is able
to deal equally well with both coarse and fine registration
scenarios.

2. Game-Theoretic Surface Registration
We are looking for a robust set of inliers for correspon-

dence selection from which we can estimate the rigid trans-
formation. Most of the currently adopted matching schemes
operate on a local level, and global information comes only
as an afterthought by checking the quality of the candidate
matches with respect to the registration error obtained. The
approach we are proposing, on the other hand, brings global
information into the matching process by favoring sets of
point-associations that are mutually compatible with a sin-
gle rigid transformation. Fundamental to our approach is
the fact that requiring the compatibility to a single transfor-
mation is equivalent to requiring that there exists a compati-
ble transformation for each pair of mates. Following [19, 2],
we model the mating process in a game-theoretic frame-
work, where two players extracted from a large population
select a pair of corresponding points from two surfaces to
be registered with one another. The player then receives
a payoff from the other players proportional to how com-
patible his pairings are with respect to the other player’s
choice, where the compatibility derives from the existence
of a common rigid transformation. More explicitly, if there
exists a rigid transformation that moves both his point and
the other player’s point close to the corresponding mates,
then both players receive a high payoff, otherwise the pay-
off will be low. Clearly, it is in each player’s interest to
pick correspondences that are compatible with the mates the
other players are likely to choose. In general, as the game is
repeated, players will adapt their behavior to prefer matings
that yield larger payoffs, driving all inconsistent hypotheses
to extinction, and settling for an equilibrium where the pool
of mates from which the players are still actively select-
ing their associations forms a cohesive set with high mu-
tual support. Within this formulation, the solutions of the
matching problem correspond to evolutionary stable states
(ESS’s), a robust population-based generalization of the no-
tion of a Nash equilibrium.

In a sense, this mating process can be seen as a contex-
tual voting system, where each time the game is repeated
the previous selections of the other players affect the future
vote of each player in an attempt to reach consensus. This
way the evolving context brings global information into the
selection process.

2.1. Non-cooperative Games

Originated in the early 40’s, Game Theory was an at-
tempt to formalize a system characterized by the actions of
entities with competing objectives, which is thus hard to
characterize with a single objective function [21]. Accord-
ing to this view, the emphasis shifts from the search of a
local optimum to the definition of equilibria between op-
posing forces. In this setting multiple players have at their
disposal a set of strategies and their goal is to maximize a
payoff that depends also on the strategies adopted by other
players. Evolutionary game theory originated in the early
70’s as an attempt to apply the principles and tools of game
theory to biological contexts. Evolutionary game theory
considers an idealized scenario where pairs of individuals
are repeatedly drawn at random from a large population to
play a two-player game. In contrast to traditional game-
theoretic models, players are not supposed to behave ratio-
nally, but rather they act according to a pre-programmed be-
havior, or mixed strategy. It is supposed that some selection
process operates over time on the distribution of behaviors
favoring players that receive higher payoffs.

More formally, let O = {1, · · · , n} be the set of avail-
able strategies (pure strategies in the language of game the-
ory), and C = (cij) be a matrix specifying the payoff that
an individual playing strategy i receives against someone
playing strategy j. A mixed strategy is a probability dis-
tribution x = (x1, . . . , xn)T over the available strategies
O. Clearly, mixed strategies are constrained to lie in the
n-dimensional standard simplex

∆n =

{
x ∈ IRn : xi ≥ 0 for all i ∈ 1 . . . n,

n∑
i=1

xi = 1

}
.

The support of a mixed strategy x ∈ ∆, denoted by σ(x),
is defined as the set of elements chosen with non-zero prob-
ability: σ(x) = {i ∈ O | xi > 0}. The expected payoff re-
ceived by a player choosing element i when playing against
a player adopting a mixed strategy x is (Cx)i =

∑
j cijxj ,

hence the expected payoff received by adopting the mixed
strategy y against x is yTCx. The best replies against
mixed strategy x is the set of mixed strategies

β(x) = {y ∈ ∆ | yTCx = max
z

(zTCx)} .

A strategy x is said to be a Nash equilibrium if it is the best
reply to itself, i.e., ∀y ∈ ∆, xTCx ≥ yTCx . This implies
that ∀i ∈ σ(x) we have (Cx)i = xTCx; that is, the payoff
of every strategy in the support of x is constant.

A strategy x is said to be an evolutionary stable strategy
(ESS) if it is a Nash equilibrium and

∀y ∈ ∆ xTCx = yTCx⇒ xTCy > yTCy . (1)

This condition guarantees that any deviation from the stable
strategies does not pay.
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Figure 1. Example of mating strategies.

2.2. Mating Strategies and Payoffs

Central to this framework is the definition of a mating
game, which implies the definition of the strategies avail-
able to the players and of the payoffs related to these strate-
gies. Given a set of model points M and a set of data points
D we call a mating strategy any pair (a1, a2) with a1 ∈ M
and a2 ∈ D. We call the set of all the mating strategies S.
In principle, all the model and data points could be used to
build the mating strategies set, thus giving S = M ×D. In
practice, however, we adopt some heuristics that allow us
to obtain good alignments with a much smaller set. Once S
has been selected, our goal becomes to extract from it the
largest subset that includes only correctly matched points:
that is, strategies that associate a point in the model surface
with the same point in the data surface. To enforce this we
assign to each pair of mating strategies a payoff that is in-
versely proportional to a measure of violation of the rigidity
constraint. This violation can be expressed in several ways,
but since all the rigid transformations preserve Euclidean
distances, we choose this property to express the coherence
between mating strategies.

Definition 1. Given a function π : S × S → R+,
we call it a rigidity-enforcing payoff function if for any
((a1, a2), (b1, b2)) and ((c1, c2), (d1, d2)) ∈ S×S we have
that ||a1− b1| − |a2− b2|| > ||c1− d1| − |c2− d2|| implies
π((a1, a2), (b1, b2)) < π((c1, c2), (d1, d2)). In addition, if
π((a1, a2), (b1, b2)) = π((b1, b2), (a1, a2)), π is said to be
symmetric.

A rigidity-enforcing payoff function is a function that
is monotonically decreasing with the absolute difference of
the Euclidean distances between respectively the model and
data points of the mating strategies compared. In other
words, given two mating strategies, their payoff should
be high if the distance between the model points is equal
to the distance between the data points and it should de-
crease as the difference between such distances increases.
In the example of Figure 1, mating strategies (a1, a2) and
(b1, b2) are coherent with respect to the rigidity constraint,
whereas (b1, b2) and (c1, c2) are not, thus it is expected that
π((a1, a2), (b1, b2)) > π((b1, b2), (c1, c2)).

Further, if we want mating to be one-to-one, we must put
an additional constraint on the payoffs, namely that mates
sharing a point are incompatible.

Definition 2. A rigidity-enforcing payoff function π is
said to be one-to-one if a1 = b1 or a2 = b2 implies
π((a1, a2), (b1, b2)) = 0.

Given a set of mating strategies S and an enumera-
tion O = {1, ..., |S|} over it, a mating game is a non-
cooperative game where the population is defined as a vec-
tor x ∈ ∆|S| and the payoff matrix C = (cij) is defined
as cij = π(si, sj), where si, sj ∈ S are enumerated by
O and π is a symmetric one-to-one rigidity-enforcing pay-
off function. Intuitively, xi accounts for the percentage of
the population that plays the i-th mating strategy. By using
a symmetric one-to-one payoff function in a mating game
we are guaranteed that ESS’s will not include mates sharing
either model or data nodes. In fact, given a non-negative
payoff function, a stable state cannot have in its support a
pairs of strategies with payoff 0 [2]. Moreover, a mating
game exhibits some additional interesting properties.

Theorem 1. Given a set of model points M , a set of data
points D = TM that are exact rigid transformations of the
points in M , and a set of mating strategies S ⊆ M × D
with (m,Tm) ∈ S for all m ∈M , and a mating game over
them with a payoff function π, the vector x̂ ∈ ∆|S| defined
as

x̂i =

{
1/|M | if si = (m,Tm) for some m ∈M ;
0 otherwise,

is an ESS and obtains the global maximum average payoff.

Sketch of proof. Let Ŝ ⊆ S be the set of mates that match
a point to its copy, clearly for all s, q ∈ Ŝ, s 6= q we have
π(s, q) = 1, while for s ∈ Ŝ and q ∈ S \ Ŝ, we have
π(s, q) < 1. For all s ∈ Ŝ we have that π(x̂, x̂) = |M |−1

|M |

while, since π is one-to-one, for any q ∈ S \ Ŝ there must
be at least one sq ∈ Ŝ with π(q, sq) = 0, thus π(q, x̂) <
|M |−1
|M | , thus x̂ is a Nash equilibrium. Further, since the in-

equality is strict, it is an ESS. Finally, x̂ is a global maxi-
mizer of π since |M |−1

|M | is the maximum value that a one-
to-one normalized payoff function over |M | points can at-
tain.

This theorem states that when matching a surface with
a rigidly transformed copy of itself the optimal solution
(i.e., the population configuration that selects all the mat-
ing strategies assigning each point to its copy) is the stable
state of maximum payoff. Since well established algorithms
to evolve a population to such a state exist, this provides us
with an effective mating approach. Clearly, aligning a sur-
face to an identical copy is not very useful in practical sce-
narios, where occlusion and measurement noise come into
play. While the quality of the solution in presence of noise
will be assessed experimentally, we can give some theoreti-
cal results regarding occlusions.
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Figure 2. An example of the evolutionary process. Four points are sampled from the two surfaces and a total of six mating strategies are
selected as initial hypotheses. The matrix Π shows the compatibilities between pairs of mating strategies according to a one-to-one rigidity-
enforcing payoff function. Each mating strategy got zero payoff with itself and with strategies that share the same source or destination
point (i.e., π((b1, b2), (c1, b2)) = 0). Strategies that are coherent with respect to rigid transformation exhibit high payoff values (i.e.,
π((a1, a2), (b1, b2)) = 1 and π((a1, a2), (d1, d2)) = 0.9)), while less compatible pairs get lower scores (i.e., π((a1, a2), (c1, c2)) = 0.1).
Initially (at T=0) the population is set to the barycenter of the simplex and slightly perturbed (3-5%). After just one iteration, (c1, b2) and
(c1, c2) have lost a significant amount of support, while (d1, c2) and (d1, d2) are still played by a sizable amount of population. After ten
iterations (T=10), (d1, d2) has finally prevailed over (d1, c2) (note that the two are mutually exclusive). Note that in the final population
((a1, a2), (b1, b2)) have a larger support than (d1, d2) since they are a little more coherent with respect to rigidity.

Theorem 2. Let M be a set of points with Ma ⊆ M and
D = TMb a rigid transformation of Mb ⊆ M such that
|Ma ∩ Mb| ≥ 3, and S ⊆ Ma × D be a set of mating
strategies over Ma and D with (m,Tm) ∈ S for all m ∈
Ma ∩Mb. Further, assume that the points that are not in
the overlap, that is the points in Ea = Ma \ (Ma ∩Mb)
and Eb = Mb \ (Ma ∩Mb), are sufficiently far away such
that for every s ∈ S, s = (m,Tm) with m ∈Ma ∩Mb and
every q ∈ S, q = (ma, Tmb) with ma ∈ Ea and mb ∈ Eb,
we have π(q, s) < |Ma∩Mb|−1

|Ma∩Mb| , then, the vector x̂ ∈ ∆|S|

defined as

x̂i =

{
1/|M | if si = (m,Tm) for some m ∈Ma ∩Mb ;
0 otherwise,

is an ESS.
Sketch of proof. We have π(x̂, x̂) = |Ma∩Mb|−1

|Ma∩Mb| . Let
q ∈ S be a strategy not in the support of x̂, then, ei-
ther it maps a point in Ma or Mb, thus receiving payoff
π(q, x̂) < |Ma∩Mb|−1

|Ma∩Mb| because of the one-to-one condition,
or it maps a point in Ea to a point in Eb, receiving, by hy-
pothesis, a payoff π(q, x̂) < |Ma∩Mb|−1

|Ma∩Mb| . Hence, x̂ is an
ESS.

The result of theorem 2 is slightly weaker than theorem
1, as the face of the simplex corresponding to the “cor-
rect” overlap, while being an evolutionary stable state, is
not guaranteed to obtain the overall highest average payoff.
This is not a limitation of the framework as this weakening
is actually due to the very nature of the alignment problem
itself. The inability to guarantee the maximality of the av-
erage payoff is due to the fact that the original object (M )
could contain large areas outside the overlapping subset that
are perfectly identical. Further, objects that are able to slide
(for instance a plane or a sphere) could allow to move be-
tween different mixed strategies without penalty. These sit-
uations cannot be addressed by any algorithm without re-

lying on supplementary information. However, in practice,
they are quite unlikely, exceptional cases. In the experimen-
tal section we will show that our approach can effectively
register even quasi-planar surfaces.

2.3. Building the Mating Strategies Set
From a theoretical point of view the total number of mat-

ing strategies in a registration problem is |M × D|, which
can be very large even with medium-sized surfaces. In prac-
tice, it is possible to apply several heuristics to select a lower
number of candidates while still achieving good alignment
results. Since the proposed approach is very selective it is
not necessary to use all the model points: even a highly ag-
gressive subsampling does not affect the registration qual-
ity, provided that some points in the overlapping region be-
tween model and data are retained. In fact, our approach
does not try to find a good registration by means of a vote
counting validation; instead it takes quite the opposite route,
by self-validating the selected mixed strategy exploiting its
internal coherence. Once the model points have been sub-
sampled, the mating strategies set could be created by pair-
ing each one of them with all the data points. Again, while
this approach would work, it is somewhat wasteful since
most of the mating strategies could be dropped on the ba-
sis of some local property of the surface surrounding the
model and data point. For instance, the mean or Gaussian
curvatures can be compared or some surface feature can be
calculated in order to select only meaningful pairs. In the
experimental section we will suggest an effective selection
strategy. Once a proper set of mates has been chosen, a pay-
off function is needed. In principle, any proper one-to-one
symmetric rigidity-enforcing payoff function could be used
to capture the coherence between pairs of mating strategies.
From a practical point of view it is often advisable to use
bounded functions, usually in the interval (0, 1]. Very good
candidates are the negative exponentiation of the difference
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Figure 3. Comparison of coarse registration techniques using real range data, measuring ground RMS (column 1), translation (column 2)
and rotation (column 3) errors as a function of noise (row 1), occlusion (row 2) and number of samples (row 3).

between the distances of the model and data points, or the
ratio between the min and the max distance. In general, the
steeper is the function, the more selective is the choice of
the inlier mating strategies.

2.4. Evolving to an Optimal Solution
The search for a stable state is performed by simulat-

ing the evolution of a natural selection process. Under very
loose conditions, any dynamics that respect the payoffs is
guaranteed to converge to Nash equilibria [21] and (hope-
fully) to ESS’s; for this reason, the choice of an actual se-
lection process is not crucial and can be driven mostly by
considerations of efficiency and simplicity. In this paper we
chose to use the replicator dynamics, a well-known formal-
ization of the selection process governed by the following
equation

xi(t+ 1) = xi(t)
(Cx(t))i

x(t)TCx(t)
(2)

where xi is the i-th element of the population and C the
payoff matrix. A simple but complete example of the evo-
lution process is shown in Figure 2.

Once the population has reached a local maximum, all
the non-extincted mating strategies can be used to calculate
the rigid transformation between data and model surfaces.
A clear advantage of our approach is that in the final mixed
strategy each pair of points is weighted proportionally to
its degree of participation in the equilibrium (see Figure 2).

This is similar in spirit to the concept of compatibility be-
tween mates adopted by a number of fine registration al-
gorithms, yet it does not depend at all on supplementary
information such as surface normals or texture color. This
compatibility can be used to weigh each pair when calcu-
lating the best surface alignment by using a weighted least
squares fitting technique [11].

3. Experimental Results
Since the proposed technique can be used independently

for coarse and fine registration, we evaluated its perfor-
mance with respect to state-of-the-art algorithms of both
fields. All the experiments have been executed on two
sets of data: range images obtained from real-world scan-
ners and synthetically-generated surfaces. For the first set
of experiments we selected models from publicly available
databases; specifically the Bunny [20], the Armadillo [13]
and the Dragon [9] from the Stanford 3D scanning reposi-
tory. To further assess the shortcomings of the various ap-
proaches, we used three synthetic surfaces representative of
as many classes of objects: a wave surface, a fractal land-
scape and an incised plane (see Figure 4).

In all the experiments the set of mating strategies was
obtained using the same selection technique. We used
the MeshDOG [22] 3D feature detector to find interesting
points in both the model and the data range images. A de-
scriptor was associated to each point of interest; after con-
sidering both the MeshHOG and the Spin Image descrip-
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Figure 4. Comparison of coarse registration techniques using synthetic objects, measuring motion error as a function of noise.

tors, we preferred the latter as we found it to be more dis-
tinctive. Then a set of candidate source points was subsam-
pled from the model and for each source point we created
5 mating strategies by connecting it to the 5 points with the
most compatible descriptors. The rigidity-enforcing payoff
function chosen was

π((a1, b1), (a2, b2)) =
min(|a1 − a2|, |b1 − b2|)
max(|a1 − a2|, |b1 − b2|)

(3)

where a1, a2, b1 and b2 are respectively the two model
(source) and data (destination) points in the compared mat-
ing strategies.

3.1. Coarse Registration

We compared our method with two coarse registra-
tion methods: RANSAC-based DARCES [5] and Spin Im-
ages [12]. DARCES has been implemented according to
the original paper, while we used the Spin Images variant
suggested in [4] to obtain a higher accuracy. In Figure 3
we show the results obtained using the set of surfaces from
the Stanford repository. Each test was made under differ-
ent conditions of noise, occlusion and subsampling and was
run for a total of 12 times over the set of range images.
For each set of experiments we plot the RMS distance for
the actual point correspondences in the two meshes, and the
estimation errors of the translation vector and rotation an-
gle. In order to obtain a ground-truth for precise error mea-
surement we generated the data points by adding Gaussian

noise, random occlusion and motion to the model points.
In these experiments the surfaces were obtained from laser
scans of objects of hundreds of millimeters in size, with a
resolution of about one tenth of millimeter. The first row
of Figure 3 plots the sensitivity to Gaussian noise exhibited
by the different techniques. The noise level is expressed as
the ratio between the standard deviation of the noise and
the average edge length. While DARCES is not very sensi-
tive to noise, it delivers by far the worst overall results. By
contrast, Spin Images give fairly good results at low noise
levels, but their performance worsens quickly as noise is in-
creased. The proposed approach (GTR), on the other hand,
exhibits errors that are consistently an order of magnitude
below Spin Images. In the second row we show the effect
of occlusion under a constant level of Gaussian noise with
standard deviation equal to 12% of the average edge length.
The results show that the tested techniques are substantially
insensitive to occlusions, our technique constantly outper-
forming the other approaches. Finally, the third row shows
the effect of subsampling. Our game-theoretic method out-
performs the other approaches. Note that the Spin Images
based technique was never able to find a correct transforma-
tion when provided with less than 300 samples.

Figure 4 plots the alignment results on the three synthetic
surfaces. Each set of experiments was conducted over a sin-
gle type of surface (displayed at the beginning of the row)
with 12 runs for each technique and noise level. Since these
objects are synthetic, errors on translation are expressed



in edge units. The “wave” test object (first row) offers a
regular surface with few outstanding features and high re-
dundancy of the pattern; in this scenario the Spin Images
technique is affected by the inability to discern among a
large amount of similar descriptors, thus it performs poorly
at all noise levels. Conversely, the geometric-based con-
sensus exploited by our registration approach allows for a
more precise selection and thus a more accurate registra-
tion. The “fractal landscape” test object (second row) is
an irregular surface that allows to produce very distinctive
feature descriptors. In fact, with low levels of noise both
Spin Images and our technique perform very well, albeit as
noise increases we achieve better results. Finally, the “in-
cised plane” object (third row) is a big flat domain with a
small cross just half an edge deep. This represents a very
difficult target for most registration techniques, since very
few and faint features are available, while a large planar sur-
face dominates the landscape. Despite the lack of good de-
tectable points, our technique is able to register the surface
as long as noise is minimal. With higher noise levels the
bumped cross fades and becomes almost indistinguishable
from the plane itself. Note that DARCES achieves mediocre
results under all tested conditions.

3.2. Fine Registration

The performance of our approach with respect to fine
registration has been studied in a separate batch of experi-

Figure 5. Examples of surface registration obtained respectively
with RANSAC-based DARCES (first column), Spin Images (sec-
ond column), and our game-theoretic registration technique (third
column).
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Figure 6. Comparison of fine registration accuracies (the green
dashed line represents y=x). Graph best viewed in color.

ments. The goal of this test is two-fold: we want to eval-
uate our quality as a complete alignment tool and, at the
same time, find the breaking point for traditional fine reg-
istration techniques. The method we used for comparison
is a best-of-breed ICP variant, similar to the one proposed
in [20]. Point selection is based on Normal Space Sam-
pling [16], and point-surface normal shooting is adopted for
finding correspondences; distant mates or candidates with
back-facing normals are rejected. To minimize the influence
of incorrect normal estimates, matings established on the
boundary of the mesh are also removed. The resulting pair-
ings are weighted with a coefficient based on compatibility
of normals, and finally a 5%-trimming is used. Each test
was performed by applying a random rotation and transla-
tion to different range images selected from the Stanford 3D
scanning repository. Additionally, each range image was
perturbed with a constant level of Gaussian noise with stan-
dard deviation equal to 12% of the average edge length. We
completed 100 independent tests and for each of them we
measured the initial RMS error between the ground-truth
corresponding points and the resulting error after perform-
ing a full round of ICP (ICP) and a single run of our reg-
istration method (GTR). In addition, we applied a step of
ICP to the registration obtained with our method (GTR +
ICP) in order to assess how much the solution extracted us-
ing our approach was further refinable. A scatter plot of
the obtained errors before and after registration is shown in
Figure 6. We observe that ICP reaches its breaking point
quite early; in fact with an initial error above the threshold
of about 20mm it is unable to find a correct registration. By
contrast, GTR is able to obtain excellent alignment regard-
less of the initial motion perturbation. Finally, applying ICP
to GTR decreases the RMS only by a very small amount.

While we did not carry out any formal benchmark of the
execution time required by our technique, we always ob-
served a very fast convergence of the replicator dynamics,
even with several thousands of mating strategies. In the



worst scenarios our unoptimized C++ implementation1 of
the framework required less than 2 seconds (on a typical
desktop PC) to evolve a population of 4000 to a stable state.

4. Conclusions
In this paper we introduced a novel game-theoretic tech-

nique that solves both the coarse and fine surface registra-
tion problems at once. Our approach has several advantages
over the state-of-the-art: it does not require any kind of ini-
tial motion estimation, as it does not rely on spatial relation-
ships between model and data points, it does not need any
threshold as it produces a continuous compatibility weight
on the selected point matches that can be used directly for
alignment estimation, and, differently from most inlier se-
lection techniques, it is not affected by a large number of
outliers since it operates an explicit search for good inliers
rather than using random selection or vote counting for vali-
dation. From a theoretical point of view, a sound correspon-
dence between optimal alignments and evolutionary equi-
libria has been presented and a wide range of experiments
validated both the robustness of the approach with respect
to noise and its performance in comparison with other well-
known techniques.
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