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Abstract

Surface registration is a fundamental step in the recon-
struction of three-dimensional objects. While there are sev-
eral fast and reliable methods to align two surfaces, the
tools available to align multiple surfaces are relatively lim-
ited. In this paper we propose a novel multiview registration
algorithm that projects several pairwise alignments onto a
common reference frame. The projection is performed by
representing the motions as dual quaternions, an algebraic
structure that is related to the group of 3D rigid transfor-
mations, and by performing a diffusion along the graph of
adjacent (i.e., pairwise alignable) views. The approach al-
lows for a completely generic topology with which the pair-
wise motions are diffused. An extensive set of experiments
shows that the proposed approach is both orders of magni-
tude faster than the state of the art, and more robust to ex-
treme positional noise and outliers. The dramatic speedup
of the approach allows it to be alternated with pairwise
alignment resulting in a smoother energy profile, reducing
the risk of getting stuck at local minima.

1. Introduction
Surface registration is a fundamental step in the recon-

struction of three-dimensional objects. This is typically a
two step process where all the views are first registered
against each other, and then all the pairwise transformations
are lowered to a common coordinate frame through a pro-
cess commonly referred to as multiview registration.

The literature on pairwise registration is quite am-
ple, with modifications to the original ICP proposed by
Zhang [23] and Besl and McKay [4] taking the lion’s share.
ICP-based methods start from an initial pose estimate and
iteratively refine it by minimizing a distance function mea-
sured between pairs of selected neighboring points. The
variants generally differ in the strategies used to sample
points from the surfaces, reject incompatible pairs, or mea-
sure error. In general, the precision and convergence speed
of these techniques is highly data-dependent and very sen-
sitive to the fine-tuning of the model parameters. Sev-

eral approaches that combine these variants have been pro-
posed in the literature in order to overcome these limita-
tions (see [19] for a comparative review). Some recent vari-
ants avoid hard culling by assigning a probability to each
candidate pair by means of evolutionary techniques [15] or
Expectation Maximization [10]. ICP variants, being itera-
tive algorithms based on local, step-by-step decisions, are
very susceptible to the presence of local minima. Other fine
registration methods include the well-known approach by
Chen [6] and signed distance fields matching [16].

By contrast, the literature of multiview registration is
more diverse. In [6] Chen and Medioni propose to itera-
tively merge new views into a single metaview: The regis-
tration of a new view against the metaview is obtained with
a common pairwise registration technique, such as ICP, and
then the points of the new registered view are merged to
the metaview; the approach is iterated until all the range
images are merged. This metaview approach has problems
since registration errors are accumulated rather than medi-
ated. To solve this problem Bergevin et al. [3] match points
in every view with all the views overlapping with it, and
calculate a transformation that registers the first view us-
ing all the mating points. This process is iterated to con-
vergence, thus diffusing the errors among all views. This
is implicitly a diffusion process where the random walk in
the transformation space is governed by the constraints of-
fered by nearby views in the view-graph; however, conver-
gence toward the steady-state is extremely slow and com-
putationally demanding. Eggert et al. [9] constrain the pair-
ings so that the points of each scan map with exactly one
other point and then minimize the total distance between
the paired points. This speeds up convergence, but can pre-
vent the algorithm from converging to a correct solution as
the views may cluster into groups that are well registered,
without improving inter-group registration. With these it-
erative algorithms based on global point correspondences,
how and when to apply the transformation remains an open
issue: For example, Bergevin et al. [3] calculate a trans-
formation for each view separately and then apply them
simultaneously before the next round of matchings, while
Benjemaa and Schmitt [2] apply the new transformations
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independently as soon as they are calculated, and Eggert et
al. [9] solve for the update by simulating a spring model.
An alternative was explored in [11] where an approximate
surface model is created and the view are registered against
the model. The surface model is then iteratively refined us-
ing the new registrations.

In [18] Pulli takes a simplifying view that pairwise reg-
istrations are “as good as it gets” and that the role of mul-
tiview registration is only to project the transformation into
a common reference frame in such a way as to limit the ac-
cumulation of registration errors. To this end, he proposes
a greedy approach that tries to limit the difference between
the position of point sets as positioned in two frames and
transformed by the pairwise registration of the two frames.
More formally, he tries to keep the distortion D(S) of the
points from a set S within a given tolerance ε, where

D(S) =
∑
s∈S

∑
(i,j)∈V

||Pi(s)− Tij
(
Pj(s)

)
||2 .

Here Pi is the transformation that maps a point into the
coordinate system of view i, Tij is the transformation that
maps the coordinate frame j into the coordinate frame i ob-
tained through pairwise registration, and V is the set of pairs
of neighboring views for which pairwise registration is per-
formed. Pulli suggests to sample the set of fiduciary points
S from the surface of the object. Interestingly, by working
only on the space of transformations, this approach limits
the memory requirements since it does not need to keep all
the points from all the views in memory at once. Note, how-
ever, that the approach cannot guarantee that an optimal so-
lution will be found, nor that any solution within the given
tolerance will be found.

More recently, Williams and Bennamoun [22] adopted
a similar view, posing the problem as the minimization of
the distortion on a set of fiduciary points and computing
the minimization by an iterative approach optimizing each
rotation via singular value decomposition.

In this paper we propose a novel multiview registration
algorithm where the poses are estimated through a diffusion
process on the view-adjacency graph. The diffusion process
is over dual quaternions [7], a non-commutative and non-
associative algebraic structure that is related to the group
SE(3) of 3D rigid transformations, leading to an approach
that is both orders of magnitude faster than the state of the
art, and more robust to extreme positional noise and out-
liers.

2. Dual Quaternions and 3D Transformations
Quaternions have been a popular geometrical tool for

more than 20 years as they represent 3D rotations in a
way that is arguably more efficient and robust than 3 × 3
rotation matrices [20]. Quaternions are an algebraic ex-
tension of complex numbers with 3 imaginary bases i, j,

and k, thus a quaternion is a number of the form q =
a + ix + jy + kz. The multiplication of two quaternions
is defined through the following multiplication rules for the
three imaginary bases: i2 = j2 = k2 = −1, ij = k = −ji,
jk = i = −kj, ki = j = −ik. The conjugate of
a quaternion q = a + ix + jy + kz is the quaternion
q∗ = a−ix−jy−kz, while the norm of a quaternion is the
quantity ||q|| =

√
qq∗ =

√
q∗q =

√
a2 + x2 + y2 + z2.

Quaternions with unitary norm are called unit quaternions.
In the following we will use the vectorial representation of
quaternions: Let i = (i, j, k) be the row-vector of the imag-
inary bases, we can write the quaternion q as a+ iv, where
v = (x, y, z)T is a 3D vector. A right-handed 3D rotation
of angle θ around the axis of unit vector v is in relation with
the unit quaternion q = cos(θ/2) + sin(θ/2)iv. In fact, let
p = (px, py, pz)

T be a 3D point and pr its rotation, we
have ipr = q(ip)q∗. The ring of quaternions, however, is
a dual cover of the group SO(3) of 3D rotations, as q and
−q represent the same rotation. Quaternions are particu-
larly interesting since they allow for optimal interpolation
between rotations. The famous Spherical Linear Interpo-
lation (SLERP) algorithm [20] interpolates quaternions on
the unit hypersphere and exhibits the following useful prop-
erties:

• Shortest path: the motion between the initial rotation
R0 and the final rotation R1 is a rotation about a fixed
axis with the smallest angle.

• Constant speed: the angle of the interpolated rotation
varies linearly with respect to parameter t.

• Coordinate system invariance: the interpolation path
does not change if we change the coordinate system.

On the other hand, linear interpolation followed by repro-
jection onto the unit hypersphere guarantees the first and
third properties, but exhibits changes in speed, in particular
it accelerates around the middle of the interpolation. This
implies that a linear averaging of quaternions does not min-
imize the squared geodesic distance in the unit quaternion
manifold in the same way that the mean of a set of points
minimizes the squared Euclidean distances to the points.
Unfortunately, SLERP does not generalize to the blending
of several rotations. Buss and Fillmore [5] provide an it-
erative algorithm to find the proper (weighted) mean in the
unit-quaternion manifold, while Kavan and Žára [14] show
that the difference between spherical and linear interpola-
tion is always less than 0.071 radians.

Dual quaternions are less known than quaternions, but
their ability to efficiently represent rigid transformations
has been successfully adopted in 3D animation and skin-
ning [12], robot control and registration [1, 8], and have
been used in theoretical kinematics for a long time [17].
Dual quaternions are an algebraic extension of quaternions
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Table 1. Multiplicative table of dual quaternions.

1 i j k ε εi εj εk
1 1 i j k ε εi εj εk
i i −1 k −j εi −ε εk −εj
j j −k −1 i εj −εk −ε εi
k k j −i −1 εk εj −εi −ε
ε ε εi εj εk 0 0 0 0
εi εi −ε εk −εj 0 0 0 0
εj εj −εk −ε εi 0 0 0 0
εk εk εj −εi −ε 0 0 0 0

much like complex numbers are an extension of the reals.
They are defined in terms of a dual basis ε that commutes
with the imaginary bases; thus, a dual quaternion is a num-
ber of the form q + εr, where q and r are quaternions, and
the product follows the multiplicative rule ε2 = 0, yielding

(q + εr)(s+ εt) = qs+ ε(qt+ rs) .

This results in the multiplicative table shown in Table 1.
Dual quaternions have three different conjugates:

(q+εr)∗ = q∗+εr∗ (q+εr)† = q∗−εr∗ (q+εr)+ = q−εr

The norm of a dual quaternion dq is ||dq|| =
√
dq∗dq =√

dq dq∗ = ||dq∗|| and the inverse of a dual quaternion dq is
dq−1 = dq∗

||dq||2 . The rigid transformation obtained by a ro-
tation defined by the unit quaternion r and then a translation
by t = (tx, ty, tz)

T , is represented by the dual quaternion

dq = r + 1
2εit r .

In fact, if we represent a 3D point p as 1+εip, the following
holds:

(r + 1
2εitrt)(1 + εip)(r + 1

2εitr)
† =

(r + 1
2εitr + εrip)(r∗ − 1

2ε(itr)
∗) =

(r + 1
2εitr + εrip)(r∗ + 1

2εr
∗it) = 1 + ε(ripr∗ + it) .

Thus, 1 + εip, i.e., the dual quaternion representation of the
point p, gets mapped into the dual quaternion 1+ε(ripr∗+
it), which is the representation of p after the rotation and
translation have been applied. In fact, ripr∗ represents
the rotation by r with the usual quaternion notation, while
the addition of it takes care of the subsequent translation.
Further, any dual quaternion q + εr with ||q|| = 1 and
q · r = 0 represents a rigid transformation. Here · repre-
sents the standard dot product in the quaternion viewed as
a four-dimensional vector space over IR. However, the dual
quaternion representation is not unique since, as with the
normal quaternions, dq and −dq represent the same trans-
formation.

In [13, 12] the authors present ScLERP, a generalization
of the SLERP interpolation algorithm for dual quaternions.

Let α(t), a(t), δ(t), and d(t) be respectively the rotation
angle and axis, and the translation magnitude and direc-
tion, then ScLERP was shown to have the following prop-
erties: a) a(t), and d(t) are constant and α(t) ∈ [−π;π]
(shortest path); b) d

dtα(t) = 0 and d
dtδ(t) = 0 (constant

speed). Further, it is invariant to changes in the coordi-
nate system. In [13] was presented an iterative algorithm
called Dual quaternion Iterative Blending (DIB) for averag-
ing dual quaternions in a way that minimizes the (weighted)
squared geodesic distances between the target mean and the
input quaternions in the Riemannian manifold of unit dual
quaternions, and it was shown that the variation between the
proper geodesic average and a linear blending followed by a
reprojection has an upper bound of 0.143 radians in rotation
and a relative variation of 15% in translation, while in gen-
eral the differences remain much smaller. In particular, if
the set of dual quaternions we want to blend has small vari-
ance, the linear average and the geodesic average converge
rapidly, since the difference between the geodesic and Eu-
clidean distance is O(θ) where θ is the angle of rotation. In
the following we will use the notation ScAVG(q1, . . . , qn)
to refer to geodesic mean of the quaternions (q1, . . . , qn) as
obtained by applying DIB with uniform weights.

3. View-Graph Diffusion
We cast the multiview registration problem into a dif-

fusion of rigid transformations over the view-graph, i.e., a
graph in which nodes correspond to the range images and
the edges reflect the adjacency relation between views, or,
equivalently, the existence of an overlap between the scans.
Let Vi be a transformation taking the coordinate frame of
view i into a global coordinate frame, and Tij the result
of the pairwise registration taking the coordinate frame of
view j into the frame of view i. Then, if the pairwise regis-
tration was noise-free, we would have Tji ∗ Vi = Vj for all
adjacent views i and j. In this setting the problem of mul-
tiview registration is that of finding a set of rigid motions
from each view to a common frame of reference, say that of
view 0, such that a measure of distortion between the posi-
tion Vi of view i and the position TijVj obtained from the
composition of position Vj and the pairwise registration Tij
is minimized, i.e., we seek to minimize the functional

D =
∑
i

∑
j∈N(i)

d(TijVj , Vi)

for an appropriate distortion function d. Here N(i) is the
set of neighbors of view i. This is in spirit similar to the ap-
proach taken by Pulli [18], where the distortion function is
the (squared) Euclidean distance between the final position
of a set of points S transformed with motions Vi and TijVj :

DP =
∑
i

∑
j∈N(i)

∑
p∈S
||TijVjp− Vip||2.
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Figure 1. Comparison of the different methods in the synthetic experiments at various levels of noise.

We adopt a different measure of distortion that derives from
the fact that any rigid transformation is in fact a screw mo-
tion, i.e., a rotation around an axis placed anywhere in the
3D space, and a translation along the direction of the axis.
We define the screw distance dSC(qi, q2,p) as the length
of the screw path of the point p along the transformation
q̂ = q†i q2, i.e., dSC(qi, q2,p) =

√
t2 + α2r2p where t is the

length of the translation along the axis of q̂, α is the rotation
angle, and rp is the distance of p from the rotation axis.
The screw distortion is then defined as

DSC =
∑
i

∑
j∈N(i)

∑
p∈S

dSC(TijVj , Vi,p)2 .

A direct consequence of the fact that ScLERP inter-
polation is both shortest path and constant speed is that,
given a set of dual quaternions Q = qi, . . . , qn, their
screw average q̂ = ScAVG(qi, . . . , qn) minimizes the sum
of squared screw distances

∑
i dSC(qi, q̂,p) for any point

p ∈ IR3 [21]. That is, by measuring along the curved
screw path, the transformation that minimizes the distortion
does not depend on the points selected, which was arguably
the most problematic aspect with the Euclidean distortion
adopted by Pulli. Further, when the variation in orienta-
tion among the dual quaternions qi, . . . , qn is very small,
we have that dSC(TijVj , Vi,p) ≈ ||TijVjp− Vip|| for any
point p ∈ IR3. In fact, we have dSC(TijVj , Vi,p)2 =

d
‖
E

2
+ θ/2

sin(θ/2)d
⊥
E

2 where θ is the rotation angle, and d‖E
and d⊥E are respectively the components of the Euclidean

distance parallel and orthogonal to the axis.
The optimal multiview alignment is thus obtained by

computing the steady-state of the following process

V t+1
i = ScAVG

j∈N(i)
(±TijV tj )

where the sign uncertainty is a consequence of the sign un-
certainty in the dual quaternion representation, and is cho-
sen so that ±TijV tj · V ti > 0. Further, since for small and
moderate rotational variability in the vectors the linear aver-
age approximates well the screw average, while being much
faster, in all our experiments we are using linear averages.

Finally, the proposed approach is a refinement method
that requires initial motion estimates, but these can be com-
puted by simple composition of the transformations along
adjacent views with a breadth-first visit starting from the
view 0. A demo application and code is available at
http://www.dsi.unive.it/˜rodola/.

4. Experimental Evaluation

Multiview registration techniques have both a sparse and
diverse coverage in literature, and as such they suffer from
the lack of a robust and fair methodology for performance
assessment and comparison. Specifically, in real scenarios,
where ground-truth data is not available, it can be very hard
to evaluate and quantify the results of a global alignment
and settle for a solution, without resorting to a thorough and
time-consuming analysis of the registered views.
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Figure 2. Comparison of the different methods in the synthetic experiments with different numbers of outliers.

To this end, we performed a wide range of experiments
with both synthetic and real-world data. For each complete
3D model (from Georgia Tech’s large geometric models
archive1), a total of 36 orthographic snapshots were taken,
each at a different angle of view; these, together with the
ground-truth rigid motions used to produce the range im-
ages, constitute the dataset over which synthetic experi-
ments were performed. In all the experiments we compare
our method against Pulli’s algorithm (as implemented by
the author in the Scanalyze2 software package), currently
the method of choice in many applications. We evaluated
the performance of the two algorithms, together with the
initialization results obtained through a breadth-first cover-
age of the view graph (indicated as Spanning Tree), under
different noise conditions and connectivity levels. For all
the experiments we show the relative displacement with re-
spect to ground-truth motion (with ∆R being the angle be-
tween the two unit quaternions, and ∆T the translation error
expressed in median edge length), the RMS error among all
the ranges and range 0 (point pairs were obtained through
normal-shooting in both directions), and the Euclidean dis-
tortion metric adopted by Pulli (indicated as Distortion).

In Fig. 1 we show the results at different levels of ini-
tial displacement, where every view in the graph is con-
nected with the next two in a ring topology. Noise level
refers to a quantity which is proportional to the amount of
Gaussian noise applied to the ground-truth pairwise mo-

1http://www.cc.gatech.edu/projects/large models
2http://www.graphics.stanford.edu/software/scanalyze

tions, and ranges from a few units of edges and radians to
tens of units; for each noise level, 10 independent runs of
each method were performed. Both the Diffusion and Pulli
methods compensate well rotational errors and are compa-
rably good at low levels of noise, whereas the latter is out-
performed when positional noise increases, both in terms of
translation error and Euclidean distortion. It is worth not-
ing that when we perturbed either the rotational or trans-
lational part of the rigid motion, keeping the other fixed,
Spanning Tree and Pulli’s methods performed a joint op-
timization modifying both components, while our method
never changes the already optimal part of the motion, yield-
ing better results at all levels of noise.

In Fig. 2 we assess the resilience of the tested methods
to the presence of outliers: starting from a close-to-optimal
initialization, we introduced strong pairwise misalignments
so as to simulate a realistic scenario in which pairwise regis-
trations get stuck at local minima. Connectivity is the same
as in the previous experiments. In these graphs, the x-axis
grows with the number of such mis-registrations; here, 20
runs were performed at each level, and for each run random
pairs were picked from a uniform distribution and perturbed
strongly. It can be seen that all the methods handle well
rotational errors, with the Diffusion method giving particu-
larly good performance constantly, even when the number
of outlying pairs becomes large. Fig. 2b) and Fig. 2d) in-
terestingly show the inability of Pulli’s method to deliver
good results in such situations: this is an inherent weakness
of the method, since it acts in such a way to minimize all
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Figure 3. Comparison of the different methods in the synthetic experiments at various connectivity levels.
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Figure 4. Computation times versus noise and connectivity levels.

motion, relying on the assumption that pairwise alignments
are nearly perfect.

The next set of experiments (Fig. 3) is aimed at study-
ing the effect of view-graph connectivity on the registra-
tion results. In these figures, Connectivity level refers to the
number of links per view. As it can be readily seen, per-
formance tends to increase with the number of edges in the
view graph, as all three methods greatly benefit from more
structure being brought in. It must be noted, however, that
connectivity augmentation dramatically increases the time
requirements of Pulli’s method, bringing up convergence
times by orders of magnitude (see Fig. 4).

Figure 4 compares the average convergence time of
the proposed approach with the time required by Pulli’s
method. The times are shown as a function of noise level
and connectivity. We can see that, with the exception of

extreme values, the times required by Pulli’s approach are
independent from the level of noise, but grow linearly with
the connectivity level and are in almost all tested situations
in the order of 10 to 100 seconds. The proposed approach
exhibits the same independence with respect to noise and
linear growth with respect to connectivity level, but it is al-
ways around 2 to 3 orders of magnitude faster.

In order to simulate a more realistic type of noise, we
also tested the following setup: we perturbed the initial pair-
wise motion as for the first set of experiments, and then
applied ICP to refine the alignment. This setup simulates
a normal registration process with increasingly bad coarse
registration, with the possibility that ICP gets stuck on local
minima providing more structured outliers than the previ-
ous experiments. The results of this set of experiments can
be seen in Fig. 5. Note that our approach and Pulli’s method
yield very similar results in all the metrics except for ∆T .
This can be justified by the fact that, when caught in local
minima, ICP slides the surface one over the other, resulting
in strong translational outliers which Pulli’s method can-
not deal with. The very low RMSE derives from the fact
that sliding along the surface each point still finds close-
by mates on the other mesh. The proposed method, on the
other hand, manages to smooth all the outliers effectively,
yielding low errors in all the metrics.

Figure 6 shows an example of a real set of range images
acquired with a scanner and aligned using Pulli’s method
and the proposed approach. While at a large scale the over-
all alignment appears similar, by examining closeups of var-
ious sections of the glasses we see that Pulli’s method pro-
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Figure 5. Comparison of the different methods in the experiments with motion refined by ICP at various levels of noise.

Pulli’s method Dual quaternion diffusion

Figure 6. Global registration and closeup of slices of Pulli’s
method and our approach.

vides a slightly worse motion estimate, resulting in a wider
stratification of the meshes.

It is worth noting that the orders of magnitude speedup
provided by our approach makes it possible to run it sev-
eral times combining it with pairwise registration. The idea
is to alternate a few steps of ICP performed on all adjacent
views with the diffusion. This way the diffusion process can
be seen as a projection operator taking the incremental pair-
wise motion onto a set of consistent motion estimates. The
advantage of this projection is that the constrained motion
space smooths the energy profile of the resulting “global”
ICP, reducing the risk of getting stuck in local minima. Fig-
ure 7 shows two examples of alignments obtained by per-

forming ICP from bad initial motion estimates and then
performing diffusion at the end (Trailing diffusion) and al-
ternating between 10 steps of ICP and a diffusion process
until convergence (Alternating diffusion). Clearly alternat-
ing pairwise registration allows to avoid local minima in
these examples without incurring in any noticeable penalty
in running times.

5. Conclusions
In this paper we proposed a novel multiview registration

algorithm that projects several pairwise alignments onto
a common reference frame. The projection is performed
by representing the motions as dual quaternions which are
then diffused along the graph of adjacent (i.e., pairwise
alignable) views. The approach is general allowing for any
topology of the view-adjacency graph.

An extensive set of experiments have shown that the pro-
posed approach is both orders of magnitude faster than the
state of the art, and more robust to extreme positional noise
and outliers. Finally, the dramatic speedup of the approach
allows it to be alternated with the pairwise alignment pro-
cess resulting in a “global” ICP that exhibits a smoother
energy profile, reducing the risk of getting stuck at local
minima.
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Figure 7. Alignments obtained with the trailing and alternating approaches, and respective timings.
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metric skinning with approximate dual quaternion blending.
ACM Trans. Graph., 27(4):105, 2008. 2442, 2443

[13] L. Kavan, S. Collins, C. O’Sullivan, and J. Žára. Dual quater-
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