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Abstract—We propose a novel learning method called
“Sparse Coding of Activation” that allows an efficient search
for a near-optimal solution. With previous learning algorithms,
the number of required trials has been too large for real multi-
DoF robots to acquire. The sparse coding method constructs
a compressed representation of the activation pattern which
is sent to the motor system. The learning system evaluates
the resulting behavior of the motor system. Thus complex
properties of the motor system including actuator, skeleton,
and environment are involved in the activation patterns. In the
present paper, we use the SCA (Sparse Coding of Activation)
method to learn motions for a musculoskeletal robot. We
describe a series of experiments in which the robot attempts
to learn jumping and landing. The result shows that jumping
and landing on the level ground is acquired within 150 trials
(about 30 minutes).

I. Introduction

Autonomous learning is a very attractive way to approach
the problem of robot control. Through the training process,
the robot can acquire movements that are well adapted to the
uncertain, fluctuating environment. In addition, it does not
always require an explicit representation or a precise model
of the system.

Motor learning has been successfully implemented for
many low-dimensional and quasi-static problems. There are
many studies of theoretical models for motor control learn-
ing [1][2]. Though in theory the technique of reinforcement
learning is a general approach to learning control policies, in
practice innovations are necessary for practical systems. The
multi-DoF motion requires large amount of exploration in the
iterative framework. Most previous examples of motor learn-
ing for multi-DoF robots require prior knowledge [3][4][5].

In this paper, we propose a new learning method called
“Sparse Coding of Activation”. The principle of sparse cod-
ing has been discussed in the biological area[6]. The sparse
coding method has the potential to provide an efficient means
of motor learning. We use the method to learn jumping and
landing of a legged musculoskeletal robot “Mowgli2”.

II. Learning with the Sparse Coding of Activation

A. Sparse Coding of Activation

We propose the framework of learning with a “Sparse
Coding of Activation”(Fig.2). The SCA (Sparse Coding of

Activation) is a method using the activation pattern, which is
an abstract representation of the motion as opposed to a high-
dimensional desired target state. The patterns are generated
by the combination of the appropriate basis functions under
the constraint of sparseness.
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Fig. 2. The framework of the learning with the Sparse Coding of Activation

B. Evaluation and Optimization

We employ the mixture of random exploration and im-
proved hill-climbing search as the optimization technique for
the learning. The system finds the best pattern with the hill-
climbing search start with the pattern which is obtained from
previous random exploration.

In the phase of hill-climbing search, the system generate
the subsequent pattern (xbest + ∆x) using previous best
parameter xbest and perturbation ∆x. The system decides
to accept or reject the tested activation pattern by applying
an evaluation function to the resulting behavior. In addition,
the system stochastically validates the pattern by retry. This
validation procedure ensures that bad evaluations, which
occur often in the uncertain real world, are experimentally
corrected.

C. Implementation for the Musculoskeletal Robot

There are several possible representations for the SCA
(Sparse Coding of Activation). Here, we use a simple step
function as a basis function defined by the following equa-
tion.

f (t) =

{
a (0 ≤ t ≤ T )
0 (t < 0, t > T )

(1)

The activation pattern is divided to n phases, and Tn is a
duration time of each phase (Fig.3).
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Fig. 1. The acquired motion of jumping and landing on level ground.
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Fig. 3. Sparse Coding of Activation using step function.

III. Mowgli 2: Musculoskeletal Legged Robot

We developed a bipedal robot with an artificial muscu-
loskeletal system[7]. The robot weighs about 3 kg, is 0.84 m
body height with the legs extended, and has 8 pneumatic
muscles and 4 passive springs for 6 DoF legs. A leg has 3
degrees of freedom, one for each joint (hip, knee, and ankle).

Several proportional pressure control valves and a CPU
board are mounted on the robot. For the purposes of the
learning experiment, which requires several hours, electrical
power and compressed air is supplied from external equip-
ment. The robot has an orientation sensor, a potentiometer
on each joint, a pressure sensor on each muscle, and a touch
switch on one foot.

IV. Experiments and Results

We apply the method to a planar jumping with 4 muscle
groups. The left leg and right leg receive same activation. The
parameters to be learned consist of continuous values of air
pressure and duration time for each phase. The number of
phases of activation pattern is set to 2. We conducted three
learning sessions which includes 100 or 150 trials including
50 random exploration trials. The evaluation function is a
linear combination of maximum height and the similarity
between the observed position at the end of the movement
to the desired squatting position. The activation patterns are
valued for each jumping trials.

The vertical jumping was acquired in all of these 3
sessions. Learning time for one search session was about 30
minutes. The snapshots of the motion which was acquired in
the 3rd session are shown in Fig.1. Fig.4 shows time series
data of muscle activation pattern and measured air pressure.

The acquired activation pattern shows that flexor muscle
#2 is suppressed. The direction of the jumping is regulated
by the fine difference of the activation level of each muscle.
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Fig. 4. The acquired activation pattern and measured pressure.

V. Conclusion

In this research, we apply the “Sparse Coding of Activa-
tion” for the jumping and landing movements with the legged
musculoskeletal robot. The result shows that vertical jumping
motion is acquired with only 150 trials despite the dynamic
task involving a highly nonlinear pneumatic system.

The experiment described here employs the step function
as the basis function, and the duration of each phase is
the same for each muscle group. For future work, we will
generate activation patterns from a mixture of prepared step
functions, and allow disjoint muscle activation times.
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