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Abstract. In this paper, we present a novel problem: ”Given local de-
scriptors, how can we incorporate both local and global spatial infor-
mation into the descriptors, and obtain compact and discriminative fea-
tures?” To address this problem, we proposed a general framework to
improve any local descriptors by embedding both local and global spatial
information. In addition, we proposed a simple and powerful combina-
tion method for different types of features. We evaluated the proposed
method for the most standard scene and object recognition dataset, and
confirm the effectiveness of the proposed method from the viewpoint of
speed and accuracy.
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1 Introduction

Generic image recognition is one of the important problems of computer vision.
However, generic image recognition has not yet been put to practical use, though
specific detection techniques such as face detection and person detection are
at the production level. The difficulty for generic image recognition is that the
images should be recognized even if they appear on different scales and cluttered
backgrounds when shown from different perspective views. We focus on images
with ”spatial biases” as the first step in generic image recognition. If a person
takes pictures of objects and scenes, the composition of the pictures has some
common properties. For example, the objects are arranged in the center of the
picture. In this manner, ”spatial biases” occur in the images which the person
took for the same purpose. Therefore, image features with spatial information
are effective in many cases.

Let us briefly review the descriptors and the features for generic image recog-
nition. Self Similarity [1] and Geometric Blur [2] are descriptors containing spa-
tial information. These descriptors represent local spatial structures on inter-
esting points or grid points in the image. The HOG feature [3] is formed by
concatenating gradient histograms in each cell, and represents global spatial in-
formation. The Gist feature [4] is implemented by dividing the image into grid
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regions, calculating spatial envelopes in each cell, and finally combining spatial
envelopes to form one image feature. Therefore, Gist represents a global spatial
structure. The PHOG [5] or PHOW [6] features consist of a weighted concatena-
tion of the HOG or Bags of Words (BoW) features [7] over each image sub-region
at each resolution level. They also represent global spatial information. Notice
that BoW itself discards spatial information, but PHOW which incorporates
spatial information into BoW obtains better results on some object recognition
datasets. The above mentioned descriptors and features have been proven ex-
perimentally to have good performance for functions such as object recognition,
scene recognition and human detection. This fact reveals the importance of de-
signing good features with both local and global information of the image.

In this paper, we present a novel problem: ”Given local descriptors, how can
we incorporate both local and global spatial information into the descriptors,
and obtain compact and discriminative features?” For this problem, we propose
a general framework to improve any local descriptors by embedding both local
and global spatial information, and improving recognition performance for the
task where spatial information is essential.

In addition, by applying the proposed framework to many descriptors, we
can obtain multiple features from the image. In this situation, a classifier, which
combines multiple features, is also important. Recently, Multiple Kernel Learning
(MKL) (for example [8]) has attracted attention as a powerful classifier combin-
ing weighted multiple kernel machines. MKL is based on a kernel method, and
thus is faced with the problem of learning time for a large amount of training data
in exchange for high classification performance. Furthermore, a nearest neighbor
approach acquires high classification performance without learning time, and in
general, it needs a huge amount of classification time, because an input pattern
is compared with all the training patterns or all the training local descriptors. To
solve this problem the hashing technique is usually employed. In this paper, we
propose a simple classifier ”Naive Bayes Probabilistic Linear Discriminant Anal-
ysis (PLDA)” which combines many features based on a Naive Bayes scheme.
This classifier does not need an optimization process to assign weights to each
feature. In addition, it does not need to perform a comparison with all patterns,
but with a small number of prototypes. For this reason, the proposed classifier
is fast both in learning and classification processes.

Our proposed framework is inspired by many previous studies. The calcula-
tion of local spatial information is based on Higher-order Local Auto Correlation
(HLAC) features [9]. Improving any local descriptors is inspired by the Covari-
ance [10] and GLC [11] features. The calculation of global spatial information
is based on Fisher Weight Maps and Eigen Weight Maps [12]. Our technical
contribution is to generalize those techniques, and propose a new framework to
incorporate local and spatial information into arbitrary local descriptors. Most
descriptors are improved substantially by applying our method (see Section 6).
To the best of our knowledge, no one has proposed a general framework to
improve any local descriptors by incorporating both local and global spatial in-
formation. Furthermore, the Naive Bayes PLDA is a new approach in combining
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different types of features. This approach is simple and fast, and obtains good
results.

2 Outline of the Proposed Method

In this section, we explain the outline of the proposed method. Initially, an input
image is partitioned into spatial grids (cell). M is the number of partitioned cells.
In each cell, we calculate features representing the cell from local descriptors.
We call these features region features. We extract K kinds of features, such as
texture, shape and color. The k-th feature of j-th region in the image Ii is denoted
by f

(k)
ij ∈ R

d(k)
. For the image Ii, one feature f i is obtained by concatenating

all region features.

f
(k)
i = (f (k)T

i1 · · ·f (k)T
iM )T , (1)

f i = (f (1)T
i · · ·f (K)T

i )T . (2)

Now, we consider C classes {ωl}C
l=1, and use Bayes decision rule to classify

the image feature f i.

c = arg max
l

{P (ωl|f i)} ⇒ f i ∈ ωc. (3)

Note that p(f i) is the normalization constant ensuring that the posterior dis-
tribution is a valid probability distribution. Moreover, assuming that the prior
probability P (ωl) is the same value for all the classes, the prior probability can
be eliminated.

c = arg max
l

{p(f i|ωl)} ⇒ f i ∈ ωc. (4)

Here, the problem is how to estimate the probability density p(f i|ωl), and how
to handle the high dimensional image feature f i, which is generated by combin-
ing many kinds of features. Direct application of the feature f i is inadvisable
because of dimensionality. Therefore, we assume all the k type features f

(k)
i

are independent conditioning on the class ωl, and convert the problem into the
estimation of each probability density in low dimensional space.

p(f i|ωl) = p
(
(f (1)T

i · · ·f (K)T
i )T |ωl

)
, (5)

= p
(
f

(1)
i |ωl

)
p
(
f

(2)
i |ωl

) · · · p(
f

(K)
i |ωl

)
, (6)

=
K∏

k=1

p
(
f

(k)
i |ωl

)
. (7)

The log of Eqn. 7 can be written in the form

ln p(f i|ωl) =
K∑

k=1

ln p
(
f

(k)
i |ωl

)
. (8)
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The problem is simplified to estimating the likelihood p
(
f

(k)
i |ωl

)
for each

k-th feature following the naive Bayes approach. The assumption of conditional
independence is a very strict assumption, but the naive Bayes approach has been
proved to show higher performance than expected [13]. In fact, in generic object
recognition, the Naive Bayes Nearest Neighbor (NBNN) approach [14] achieved
satisfactory results, hence we expect our approach to achieve good performance
in image recognition.

Although the problem is divided into the estimation of p
(
f

(k)
i |ωl

)
, the feature

f
(k)
i is still a high dimensional vector, since the k-th feature consists of M region

features. Obviously, the k-th feature can be divided into region features with
conditional independence assumptions for all sorts of features.

p
(
f

(k)
i |ωl

)
=

M∏

m=1

p
(
f

(k)
im |ωl

)
. (9)

In this assumption, we discard spatial information between the cells. Using
spatial information enhances classification performance for images with a strong
alignment of objects [5]. For this reason, we consider the weighted sum of region
features to implicitly present spatial information.

g
(k)
i = w

(k)
1 f

(k)
i1 + w

(k)
2 f

(k)
i2 + · · · + w

(k)
M f

(k)
iM , (10)

=
M∑

m=1

w(k)
m f

(k)
im , (11)

where w
(k)
m ∈ R is a weight for the m-th region of the k-th feature in the image

Ii. Let F
(k)
i ∈ R

M×d(k)
denote the M × d(k) matrix where the M row vectors

are the region features.

F
(k)T
i = (f (k)

i1 · · ·f (k)
iM ). (12)

Using this matrix, Eqn. 11 can be simplified as follows:

g
(k)
i = F

(k)T
i w(k), (13)

where w(k) ∈ R
M is the region weight vector w(k) = (w(k)

1 . . . w
(k)
M )T .

The region weight is not limited to one weight vector. We can prepare some
region weight vectors, and obtain the new feature vectors by concatenating
{g(k)

ij = F
(k)T
i w

(k)
j }M ′

j=1, which are the weighted region features.

g
(k)′

i = (g(k)T
i1 . . . g

(k)T
iM ′ )T (14)

Taking the dimensionality reduction into consideration, the number of region
weight vectors is generally M ′ � M .

In addition, if g
(k)′

i is still a high dimensional vector, we use principle compo-
nent analysis (PCA) for dimensionality reduction. Let h

(k)
i be the transformed
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vector by using PCA for g
(k)′

i . Therefore, the final classification rule of Eqn. 8
becomes:

c = arg max
l

K∑

k=1

ln p
(
h

(k)
i |ωl

) ⇒ h
(k)
i ∈ ωc. (15)

We can reduce the problem to the estimation of the region weights and the
proper probability distributions. In Sections 4 and 5, we explain the implemen-
tation of these methods. In Section 5, we use PLDA to estimate the probability
distribution. Therefore, we call the proposed method for the combined multiple
features the ”Naive Bayes PLDA” method. More importantly, up to this point
we have not mentioned the selection of the region features. In the next section,
we explain how to build the region features including local spatial information
from any local descriptors.

3 Local Spatial Information

In this section, we consider the generation of the region features including local
spatial information. To this purpose, we calculate the local auto correlation
of arbitrary local descriptors. Let φ(ri) be the local descriptor at the reference
point ri and aj be the displacement vector. Then the first-order auto correlation
matrix is obtained by:

Φ(aj) =
1

NJ

∑

i∈J

φ(ri)φ(ri + aj)T . (16)

where J is a region of the image and NJ is the number of local descriptors in
the region J . Noticing that 0-th local auto-correlation in the region is the mean
of the local descriptors, we have:

φ̄ =
1

NJ

∑

i∈J

φ(ri). (17)

The local auto-correlation of any local descriptors is considered to be a type of
Higher-order Local Auto-Correlation Feature [9]. By using the elements of the
mean and the local auto-correlation matrix, we obtain the region feature:

f = (φ̄T
ηT (Φ(0)) ξT (Φ(a1)) · · · ξT (Φ(ana

)))T , (18)

where η(·) returns a column vector consisting of the elements of the upper trian-
gular portion of the input matrix, ξ(·) returns a column vector consisting of all
the elements of the input matrix, and na is the number of displacement vectors.
Selection of the displacement vectors is limited in the local area according to [9],
and the number of displacement vectors is five. Figure 1 shows the five kinds of
displacement vector in this paper. Although we can calculate the higher order
auto-correlations, we usually use up to the first or second order, because the
feature dimension exponentially increases with the increase in the order.
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Fig. 1. Displacement vectors of local auto-correlation

Let the dimension of the local descriptor be d, the dimension of the region
feature becomes d + d(d + 1)/2 + (na − 1)d2. In this way, the dimension of the
region feature increases as the square of d. If we use the high dimensional local
descriptor, it is hard to calculate the region features. Therefore, according to the
dimension of descriptors, we can select the calculation of the region feature as
follows:

Mean f = φ̄. This is the first statistic of the local descriptor. The dimension
is the same as the descriptor d.

Mean + Local Auto-Correlation at a = 0 This is the special case of Eqn.
18, f = (φ̄T

ηT (Φ(0)))T . We call this feature the GLC (Generalized Local
Correlation) feature [11]. The dimension is d + d(d + 1)/2.

Mean + all Local Auto-Correlation This is same as Eqn. 18.

The above region features, except the Mean plus all Local Auto-Correlations,
do not include spatial information. However, since they calculate the statistics of
the local descriptors in the region, we believe these features include meaningful
information.

4 Global Spatial Information

In the face recognition, Eigenfaces [15] and Fisherfaces [16] are well known meth-
ods for weighting the regions in the image. However, these methods can be ap-
plied to images consisting of the scalar values at the pixel such as the brightness,
and cannot be applied to the image where each pixel is described by the vec-
tor. For this reason, the Fisher Weight Maps (FWM) and Eigen Weight Maps
(EWM) are employed as a region weighting method [12]. The original weight
maps are defined to weight each pixel in the image. In general, images have dif-
ferent scales and aspect ratios, and the pixel-wise weight maps are not directly
utilized in the generic images. Therefore, to absorb the variety of scales and as-
pect ratios, all images are divided by a regular grid, and weight maps are applied
to these regions.

Now, we have the labeled training samples {(f (k)
i , yi)}N

i=1. Let Σ̃W be the
within-class covariance matrix of region features, and Σ̃B be the between-class
covariance matrix. The Fisher criterion is given by J(w) = trΣ̃B

trΣ̃W
. The traces of
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Σ̃W and Σ̃B are given by:

trΣ̃W = wT ΣW w, (19)
trΣ̃B = wT ΣBw, (20)

where

ΣW =
1
N

C∑

l=1

∑

i∈ωl

(F (k)
i − Ml)(F

(k)
i − Ml)T , (21)

ΣB =
1
N

C∑

l=1

nl(Ml − M)(Ml − M)T , (22)

Ml is the mean of F
(k)
i belonging to the class ωl, and M is the mean of total

data set. By maximizing the Fisher criteria under the condition wT ΣW w = 1, we
can obtain the weight vector w as the eigen vector of the generalized eigenvalue
problem.

ΣBw = λΣW w, (23)

where λ is the eigen value corresponding to the eigen vector w. We select
the M ′ largest eigen values λ1, · · · , λM ′ , and the corresponding eigen vectors
w1, · · · ,wM ′ , and calculate the weighted feature vector by using Eqn. 13 and
Eqn. 14. These weight vectors are called Fisher Weight Maps (FWM). Because
this method uses the matrix consisting of the region features, it is considered to
be the generalized Fisher discriminant analysis.

In the case of the presence of clutter or occlusion, there would be difficulty
establishing recognition if we use the global spatial information. However, the
method automatically weights the discriminative regions, and ignores less dis-
criminative regions. If unobservable regions are less important, this method is
expected to work properly in the presence of clutter or occlusion.

5 Classifier

For the estimation of the probability density, Probabilistic Linear Discriminant
Analysis is employed. Some variations of PLDA have been proposed [17][18][19].
In this paper, reference [17] is utilized whose solution is similar to that of Lin-
ear Discriminant Analysis (LDA). We note that the density estimation can be
replaced by [18] and [19].

Suppose that N training samples x1, . . . ,xN ∈ R
d are given, and all training

samples belong to one of the C classes ω1, . . . , ωC . In addition, assuming that
the test sample xt belonging to one of the C classes is given, we want to decide
the class of the test sample. Let u = A−1(x − m) (A ∈ R

d×d′
, m ∈ R

d) be
the Affine transformation that transforms the input vector to the latent variable
u. Let ut be the latent variable of the test sample, and {ui}N

i=1 be the latent
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variables of the training samples. The probability that ut belongs to the class
ωj is given by:

p(ut|ωj) = N (ut| njΨ

njΨ + I
ūj , I +

Ψ

njΨ + I
), (24)

where nj is the number of samples belonging to the class ωj , ūj is the mean of
the samples ūj = 1

nj

∑
ui∈ωj

ui belonging to the class ωj , and Ψ ∈ R
d′×d′

is the
diagonal matrix.

Here, we show the calculation of the parameters m, A, and Ψ in Eqn. 24.
At first, the between-class covariance matrix Sb ∈ R

d×d and the within-class
covariance matrix Sw ∈ R

d×d are given by:

Sw =
1
N

∑

l

∑

i∈ωl

(xi − ml)(xi − ml)T , (25)

Sb =
1
N

∑

l

nl(ml − m)(ml − m)T , (26)

where nl is the number of samples in class ωl, N is the number of the total
training samples N =

∑
l nl, ml = 1

nl

∑
i∈ωl

xi is the mean of the samples in
class ωl, and m = 1

N

∑
i xi is the mean of the total training samples. Next, we

calculate the transformation y = WT x, y ∈ R
d′

, W ∈ R
d×d′

that maximizes
the between-class covariance matrix to the within-class covariance matrix. This
process is the same as LDA, and the optimal projection matrix is given by the
solution of generalized eigenvalue problem:

SbW = SwWΛ, (27)

where Λ is the diagonal matrix with eigenvalues. The dimension d′ of the dis-
criminant space is given by d′ ≤ min(C − 1, d).

Now we diagonalize the between-class covariance matrix and the within-class
covariance matrix (Λb = WT SbW , Λw = WT SwW ). From these diagonaliza-
tions, the parameters m, A, and Ψ are given by:

m =
1
N

N∑

i=1

xi, (28)

A = W−T (
n

n − 1
Λw)1/2, (29)

Ψ = max
(
0,

n − 1
n

Λb

Λw
− 1

n

)
, (30)

where n = N/C.
To solve the PLDA, we calculate only the d dimensional generalized eigen-

value problem in Eqn. 27. Calculation complexity depends on the dimension. It
is true that Sb and Sw depend on the number of samples, but it is easy to mod-
ify the calculation of correlation matrices into incremental manner. Moreover,
because Eqn. 24 is the uni-modal Gaussian distribution, the classification rule
in Eqn. 15 is simplified.
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6 Experiment

6.1 Setup

We selected the following descriptors and features.

HLAC We used at most second order HLAC features [9]. As a preprocessing
step, we extracted edges by using the Canny operator, and obtains the bi-
nary images. The HLAC features were extracted for the binary images. The
dimension of at most second order HLAC features was 25.

Color HLAC The Color HLAC feature was one of the HLAC features [9] ex-
cept that the RGB values were utilized as the local descriptor. We used at
most first order Color HLAC features. The dimension of at most first order
Color HLAC features was 45.

HOG The HOG (Histograms of Oriented Gradients) [3] was implemented by di-
viding the image window into small spatial cells. In each cell, the histogram
of oriented gradients was calculated. All histograms were concatenated to
represent the image. We considered the histogram in each cell as the de-
scriptor. We used an unsigned gradient HOG descriptor, and used a 20◦ bin
size. The dimension of the local descriptor was 9 in our setting.

SIFT We used the densely sampled SIFT descriptor [20] for each 5 pixels. We
did not use the orientation normalization, and calculates the gray SIFT with
r = 8. The dimension of the SIFT was 128. 128 dimensions were too high to
calculate the local auto-correlation. Because the SIFT descriptor consists of
4 × 4 cells, we considered the histogram of each cell as the local descriptor.
The dimension of the histogram in the cell was 8. Therefore, since we did
not use the SIFT directly, we denote the SIFT- with the ”-” mark.

Self Similarity (SS) The Self Similarity [1] calculates the correlation between
the reference point and the surrounding points around the reference point.
We used the angle bin = 8, and the radial interval = 3. The dimension of
this descriptor was 24.

PHOG The PHOG (Pyramid Histogram of Oriented Gradients) [5] is a global
feature, and therefore we did not calculate the GLC and the local auto-
correlation, but used the weight maps to reduce the dimensionality.

Gist The Gist [4] is also a global feature. For this reason, we did not calculate
the GLC and the local auto-correlation, but used the weight maps to reduce
the dimensionality. We calculated both the gray Gist and RGB Gist for the
6 directions and 6 scales. The dimension of the gray Gist and the RGB Gist
were 36 and 108 respectively.

We denote the descriptor, which is improved by embedding Global and Local
Spatial (GLS) information, as (descriptor) + GLS. In the same manner, we
denote the descriptor with GLC and FWM as (descriptor) + GLC + FWM.

We tested the experiments on the standard workstation (XeonW5590 (3.33
GHz) ×2 = 8 core, 48GB ram) using Matlab. We did not use special acceler-
ation techniques, such as MEX, for the implementation of both learning and
classification.



10 T. Harada, H. Nakayama, and Y. Kuniyoshi

6.2 Scene classification

We experimented with a commonly used scene classification benchmark dataset
by Lazebnik et al., [21] (LSP15). LSP15 consists of gray images of OT8 [4] plus
seven additional classes. OT8 consists of 2,688 color images of eight classes.
Each class has 260 to 410 sample images. In all, it has 4,492 gray images. LSP15
has the largest number of target classes among scene datasets currently in use.
We randomly chose 100 training images for each class in LSP15. We used the
remaining samples as test data, and calculated the mean of the classification rate
for each class. This score was averaged over many trials replacing the training
and test samples randomly. This is the methodology used in previous studies.

Initially, we tested the performance of the framework of embedding global and
spatial information into any descriptors. We compared (descriptor) + GLS with
the baseline features and (descriptor) + GLC + FWM. The baseline features
were obtained by concatenating all mean descriptors in each grid. FWM was
not applied to the baseline features. The dimensions of PCA were selected to
get the best performance for all features. The dimensions of weight maps were
also selected to get the best performance for (descriptor) + GLC + FWM and
(descriptor) + GLS. We used the simple LDA as the classifier in order to compare
the performances of the features themselves.

Table 1 shows these results on LSP15 with the single features. The bold
number means the best score in each feature. We can see that GLS improves
the classification performance significantly for all descriptors. We changed the
classifier to PLDA. SIFT- (2 and 8 scales) + GLS + PLDA obtained (80.1 [%]),
which is comparable to SIFT + hard quantization + intersection kernel (80.1
[%]), but inferior to SIFT + sparse codes + intersection kernel (84.3 [%]) [22][23].

We evaluated the combination of multiple features on the LSP15. We used
four features (HOG + GLS, SIFT-(2 and 8 scales) + GLS, SS + GLS, gray
Gist), and combined them with the Naive Bayes PLDA. In LSP15, our method
obtained the comparable score (86.6 [%]) to the state-of-the-art methods (Xiao
et al. [24] (88.1 [%]), Zhou et al. [25] (85.2 [%]), Nakayama et al. [11] (84.1 [%]),
Bosch et al. [26] (83.7 [%]), Lazebnik et al. [21] (81.4 [%])).

The Naive Bayes PLDA calculates the classifiers of each feature indepen-
dently, and requires no optimization process to weight each classifier. The learn-
ing cost of PLDA is almost same as LDA. On classification, the Naive Bayes
PLDA only sums the log likelihoods of each classifier. The calculation times of
LDA on both learning and classification are shown in Table 1. Learning finished
within 1 minutes for all features, and classification finished within 0.1 second
for all features. Therefore, GLS + (Naive Bayes) PLDA approach is fast, and
obtains good performance for the scene classification.

6.3 Object recognition

Caltech-101 [27] is the de-facto standard object recognition dataset. This dataset
consists of images from 101 object categories and one background class, and
contains from 31 to 800 images per category. This dataset has large intra-class
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Table 1. Classification results on LSP15 with single features

Feature Grid LDA dim Maps dim PCA dim Classification rate [%] Learn [sec] Classify [sec]

2x2 14 4 36 54.8 ± 1.4 0.04 0.02
HOG 4x4 14 16 100 61.5 ± 1.8 0.11 0.02

(baseline) 6x6 14 36 100 62.3 ± 0.6 0.28 0.02
8x8 14 64 100 61.2 ± 1.1 1.35 0.02
2x2 14 4 216 67.6 ± 1.0 0.20 0.02

HOG 4x4 14 8 300 72.9 ± 1.3 0.64 0.02
+GLC 6x6 14 8 300 74.2 ± 0.5 0.64 0.02
+FWM 8x8 14 8 300 74.5 ± 0.7 0.71 0.02

2x2 14 4 300 72.6 ± 1.0 24.29 0.04
HOG 4x4 14 5 500 75.9 ± 0.9 35.99 0.04
+GLS 6x6 14 5 500 77.3 ± 0.8 36.18 0.04

(proposed) 8x8 14 5 500 77.1 ± 0.7 36.35 0.05

2x2 14 4 32 56.6 ± 1.2 0.04 0.02
SIFT- 4x4 14 16 60 63.1 ± 0.9 0.10 0.02

(baseline) 6x6 14 36 80 62.5 ± 0.7 0.23 0.02
8x8 14 64 120 61.1 ± 1.4 1.02 0.03
2x2 14 4 176 56.9 ± 1.6 0.15 0.02

SIFT- 4x4 14 8 350 66.9 ± 0.9 0.55 0.03
+GLC 6x6 14 8 350 69.0 ± 1.3 0.60 0.03
+FWM 8x8 14 8 350 70.4 ± 0.8 0.70 0.03

2x2 14 4 600 66.2 ± 1.3 14.39 0.03
SIFT- 4x4 14 4 600 73.1 ± 1.0 14.50 0.04
+GLS 6x6 14 4 600 74.3 ± 0.9 14.65 0.04

(proposed) 8x8 14 4 600 75.3 ± 0.7 15.00 0.04

2x2 14 4 96 64.3 ± 1.3 0.07 0.02
SS 4x4 14 16 100 65.9 ± 0.7 0.47 0.02

(baseline) 6x6 14 36 100 63.3 ± 0.9 4.93 0.03
8x8 14 64 100 60.9 ± 1.4 40.51 0.04
2x2 14 2 400 80.0 ± 0.6 2.04 0.03

SS 4x4 14 2 400 79.4 ± 0.7 2.24 0.03
+GLC 6x6 14 2 400 78.7 ± 0.9 2.40 0.03
+FWM 8x8 14 2 400 78.3 ± 0.9 2.72 0.03
SS+GLS 2x2 14 2 400 80.8 ± 0.7 36.03 0.04

(proposed) 4x4 14 2 400 80.4 ± 0.7 36.43 0.04

variety. The spatial information is essential for the image recognition, because
the images in the same category are well centered. To evaluate classification per-
formance, we followed the most standard methodology. 15 images are randomly
selected from all 102 categories for training, and another random 15 for testing.

We tested the performance of the framework of embedding global and spatial
information into any descriptors in the same manner as the scene classification
experiment. Table 2 shows these results on Caltech-101 with the single features.
The bold number means the best score in each feature. We can see also that
(descriptor) + GLS improves the classification performance significantly for all
descriptors even in the object recognition dataset. We also checked (descriptor)
+ GLS + PLDA. SIFT- (2 and 8 scales) + GLS + PLDA obtained (55.4 [%]),
which is comparable to SIFT + spatial pyramid + hard quantization + kernel
SVM (56.4 [%]), but inferior to SIFT + spatial pyramid + sparse codes + max
pooling + kernel SVM (67.0 [%]) [22][23].

We evaluated the performance of the combination of multiple features. We
use eight features (HLAC (1/1 and 1/2 resolutions), Color HLAC, HOG + GLS,
SIFT- (2 and 8 scales)+ GLS, SS + GLS, PHOG + FWM, gray Gist + FWM,
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Table 2. Classification results on Caltech101 with single features

Feature Grid LDA dim Maps dim PCA dim Classification rate [%] Learn [sec] Classify [sec]

2x2 36 4 36 22.1 ± 1.5 0.1 0.1
HOG 4x4 101 16 120 35.3 ± 1.4 0.2 0.4

(baseline) 6x6 101 36 120 36.9 ± 0.8 0.3 0.4
8x8 101 64 120 37.0 ± 1.0 1.4 0.4
2x2 101 4 216 30.8 ± 0.9 0.3 0.4

HOG 4x4 101 8 300 40.1 ± 1.6 0.8 0.4
+GLC 6x6 101 8 300 41.0 ± 0.6 0.8 0.4
+FWM 8x8 101 8 300 41.2 ± 1.5 0.9 0.4

2x2 101 4 300 41.7 ± 1.3 25.1 0.4
HOG 4x4 101 8 300 44.3 ± 1.2 33.9 0.4
+GLS 6x6 101 8 300 44.3 ± 1.0 34.2 0.4

(proposed) 8x8 101 8 300 45.2 ± 0.6 34.4 0.4

2x2 32 4 32 28.1 ± 1.3 0.1 0.1
SIFT- 4x4 101 16 120 42.9 ± 1.2 0.2 0.4

(baseline) 6x6 101 36 120 44.8 ± 1.7 0.3 0.4
8x8 101 64 120 44.4 ± 0.8 1.1 0.4
2x2 101 4 176 31.7 ± 1.3 0.2 0.4

SIFT- 4x4 101 8 350 44.8 ± 0.7 0.9 0.4
+GLC 6x6 101 8 350 44.6 ± 0.6 0.9 0.4
+FWM 8x8 101 8 350 47.2 ± 1.4 1.0 0.4

2x2 101 4 600 46.3 ± 1.0 15.1 0.5
SIFT- 4x4 101 4 600 50.2 ± 1.2 15.4 0.5
+GLS 6x6 101 4 600 52.6 ± 1.1 15.6 0.5

(proposed) 8x8 101 4 600 53.4 ± 1.0 16.2 0.5

2x2 96 4 96 40.3 ± 1.4 0.1 0.4
SS 4x4 101 16 120 43.8 ± 1.4 0.5 0.4

(baseline) 6x6 101 36 120 42.6 ± 1.5 5.3 0.5
8x8 101 64 120 42.3 ± 1.3 42.4 0.4
2x2 101 4 350 50.3 ± 1.0 16.5 0.4

SS 4x4 101 6 350 50.7 ± 0.9 34.7 0.4
+GLC 6x6 101 6 350 51.7 ± 1.4 35.0 0.4
+FWM 8x8 101 6 350 51.4 ± 1.4 35.5 0.4
SS+GLS 2x2 101 4 350 52.6 ± 0.8 64.7 0.5

(proposed) 4x4 101 6 350 52.5 ± 1.3 100.4 0.5

RGB Gist + FWM). Our classification rate achieves 66.4 ± 1.0 [%]. This per-
formance is lower than the state-of-the-art methods (Lin et al. [28] (75.8 ± 1.1
[%]), Boiman et al. [14] (72.8 ±0.39 [%]), Bosch et al. [6] (70.4 ± 0.7 [%])), but
has comparable results with Frome et al. [29] (63.2 [%]) , Zhang et al. [30] (59.1
± 0.56 [%]), and Lazebnik et al. [21] (56.4 [%]). It should be noted that our
classification method is very simple and does not use the optimization of weight
for each feature, and the learning and classification times are about 150 [sec]
and 10 [msec/frame]. Our combination method shows a good trade-off between
the computational costs and the classification performance for Caltech-101.

Finally, we evaluated the effect of the dimension of the weight maps and the
PCA dimension on the Caltech-101. Figure 2 shows the results of the SIFT- +
GLC + FWM, and SIFT- + GLS with 8 grid cells using PLDA. Since there are
no spaces to show all results, we picked out only two typical results. We can
see that the peak classification performances are achieved around 10 dimensions
with the SIFT- + GLC + FWM and SIFT- + GLS. These results show the
effectiveness of dimensionality reduction of the weight maps.



Improving Local Descriptors by Embedding Spatial Information 13

0.4

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

0.49

0.5

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

150 pca dim

200 pca dim

250 pca dim

300 pca dim

weight map dimension

ra
te

 [%
]

SIFT- + GLC + FWM + PLDA

0.46

0.47

0.48

0.49

0.5

0.51

0.52

0.53

0.54

0.55

2 3 4 5 6 7 8 9 10 11 12 13 14 15

300 pca dim 

400 pca dim

500 pca dim

600 pca dim

SIFT- + GLS + PLDA

weight map dimension

ra
te

 [%
]

Fig. 2. Effect of the dimension of the weight maps and the PCA dimension on Caltech-
101 dataset. The left figure shows the result with the single SIFT- + GLC + FWM.
Right figure shows the result with the single SIFT- + GLS (proposed).

7 Conclusions

In this paper, we proposed a general framework to improve any local descriptors
by embedding both local and global spatial information. To incorporate local
spatial information, we calculated the local auto-correlation of the densely sam-
pled local descriptors, and generated the region features. Then we calculated
the weighted sum of the region features by using discriminative weight maps to
embed global spatial information. We also proposed a simple classifier ”Naive
Bayes PLDA” which combined many features based on a Naive Bayes scheme.
Experimental results show that our method is very simple and fast, and boosts
all descriptors substantially.

There are a lot of things to improve the performance. Here we calculated the
spatial correlation of the same descriptor. Our idea can be easily extended to the
spatial correlation of different descriptors by which the conditional independence
of Naive Bayes PLDA can be relaxed. The performance of GLC is improved by
using the information geometory based metric [31]. By following this idea, we
will also invent the proper similarity measure for our framework.
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