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Abstract

Spatial Pyramid Representation (SPR) is a widely used
method for embedding both global and local spatial infor-
mation into a feature, and it shows good performance in
terms of generic image recognition. In SPR, the image is
divided into a sequence of increasingly finer grids on each
pyramid level. Features are extracted from all of the grid
cells and are concatenated to form one huge feature vector.
As a result, expensive computational costs are required for
both learning and testing. Moreover, because the strategy
for partitioning the image at each pyramid level is designed
by hand, there is weak theoretical evidence of the appropri-
ate partitioning strategy for good categorization. In this pa-
per, we propose discriminative SPR, which is a new repre-
sentation that forms the image feature as a weighted sum of
semi-local features over all pyramid levels. The weights are
automatically selected to maximize a discriminative power.
The resulting feature is compact and preserves high dis-
criminative power, even in low dimension. Furthermore,
the discriminative SPR can suggest the distinctive cells and
the pyramid levels simultaneously by observing the optimal
weights generated from the fine grid cells.

1. Introduction

In recent years, generic image recognition has attracted
many researchers and has drastically developed. One inher-
ent challenge in image recognition is the handling of spatial
information. The meanings of images are embedded in the
spatial distribution of pixels; therefore, the means of repre-
senting spatial information in a feature is an important topic
in understanding images.

Spatial information is usually embedded in the feature
extraction process. The feature can be classified into a lo-
cal feature (e.g., SIFT [14]) and a global feature (e.g., GIST
[19]). The typical process to build one image feature from
local features can be broken down into two steps [5]: 1)
coding of local features and 2) spatial pooling of semi-local
features. For each step, the embedding of spatial informa-
tion has been well studied.

A common framework for the coding step is Bag of Fea-
tures (BoF) [7]. However, BoF is built with a histogram
of the vector-quantized local features and lacks the spatial
distribution of local features in the image space. Therefore,
many studies have attempted to embed the spatial orders of
the local features into BoF (e.g., [6, 16]). Recently, sparse
coding [20] has been reported to outperform BoF in this
area [27, 5]. Sparse coding permits a linear combination of
a small number of codewords, while in BoF, one local fea-
ture corresponds to only one codeword. Sparse coding also
lacks the spatial orders of local features. To embed spatial
orders into sparse codes, [17] considers a pair of spatially
close features as a new local feature followed by sparse cod-
ing. BoF and sparse codes are the sparse representations of
the distribution of the local descriptors in the feature space.
On the other hand, the dense representation of the distribu-
tion has been studied. [18] proposed the Global Gaussian
(GG) approach that estimates the distribution as one Gaus-
sian distribution and builds the feature by arranging the el-
ements of the mean and covariance of the Gaussian. Simi-
larly, [11], which is a general form of the GG, proposed to
embed local spatial information into a feature by calculating
the local auto-correlations of any local features.

In spatial pooling, Spatial Pyramid Representation (SPR)
[12] is popular for encoding the spatial distribution of lo-
cal features. Spatial Pyramid Matching (SPM) with BoF
has been remarkably successful in terms of both scene and
object recognitions. As for sparse codes, the state-of-the-
art variants of the spatial pyramid model with linear SVMs
work surprisingly well [27, 5]. The variations of sparse
codes [29, 28] also utilize SPR. Adopting some normaliza-
tions and SPM, [22] improved the Fisher vector [21], and
obtained a discriminative feature.

As stated above, SPR contributes as a major component
to the state-of-the-art methods. In SPR, the input image is
divided into a sequence of increasingly finer grids on each
pyramid level. Features are extracted from all of the grid
cells, and are concatenated to form one huge image feature.
As a result, expensive computational costs are required for
both learning and testing. Moreover, SPR has two major pa-
rameters: the number of pyramid levels and the strategy for
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partitioning the image. Figure 1 (a) shows the spatial pyra-
mid structure used in [12, 27]. Figure 1 (b) was used in the
winner of VOC 2007 [15], and recently, many state-of-the-
art methods have employed this structure [29, 28, 22]. As
shown, the spatial pyramid structures have been designed
by hand, and therefore, it is not clear how to design an opti-
mal spatial pyramid structure.

Level 0 Level 1 Level 2

(a) Spatial pyramid representation in [12]

Level 0 Level 1 Level 2

(b) Spatial pyramid representation in [15]
Figure 1. Variations on Spatial Pyramid Representation

In this paper, we propose the discriminative SPR that
forms a feature as the weighted sum of the semi-local fea-
tures over all of the pyramid levels. The weights are auto-
matically selected to maximize a discriminative power. To
find the discriminative weights, we also propose the par-
tial least squares SPR (PlsSPR) and the Fisher SPR (Fish-
erSPR). The resulting feature is compact, and preserves
high discriminative performance even in low dimension.
In addition, the discriminative SPR can suggest distinctive
cells and pyramid levels simultaneously by observing the
weights generated from the fine grid cells.

Our contributions are summarized as follows: 1) pro-
posal of the discriminative and compact SPRs, and 2) pro-
posal of the PlsSPR and the FisherSPR as the implemen-
tations of 1). To the best of our knowledge, there are few
methods that optimize SPR by estimating the discrimina-
tive weights of cells and pyramid levels simultaneously, and
hence, the designs of SPR have been created by hand. Our
method can estimate discriminative weights of each cell on
each level. By using the weights, we can directly compare
discriminative power between cells on the different levels.
We believe that our new representation can contribute to the
automatic, effective, and proper design of SPR.

2. Related Work

SPR [12] has been widely used to encode the spatial in-
formation of local features. The original SPR gives fixed,
different weights for each pyramid level. [4] proposed
a method for learning the spatial pyramid weights. This
method finds optimal weights by using cross-validation, and
thus, it is computationally inefficient. While the weights

for a pyramid level can be learned, the optimization of the
weight of each grid cell is not considered. Similarly, [3]
used a random forest and ferns for image categorization. A
1 or 0 weight is randomly selected for each pyramid level
at the nodes. Therefore, it is difficult to provide the explicit
importance for each pyramid level. In addition, it does not
consider the weights of the grid cells.

Eigenfaces [25] and Fisherfaces [2] are well-known
methods for weighting the regions in an image. Although
these methods were originally designed for face recogni-
tion, they are considered to be frameworks for finding the
distinctive pixels in an image. However, they can be applied
only to images consisting of scalar values (e.g., brightness)
at the pixel, and thus, cannot be applied to an image where
each pixel is described by the vector. To overcome this lim-
itation, Fisher Weight Maps (FWM) was proposed in [24],
which maximizes the Fisher criterion of the feature vectors
on each pixel. In general, images have different scales and
aspect ratios, and the pixel-wise weight maps are not di-
rectly utilized in generic images. In order to absorb the va-
rieties of scales and aspect ratios, [11] proposed to divide
the image into regular grid cells to calculate the semi-local
features in each cell and to apply FWM to those features.

Finding discriminative regions are of special interest in
human detection. [8] indicated that SVM provides a mea-
sure of importance to each cell in the final discrimination
decision, and the obtained weights represent major human
contours. [8] used only the HOG, thereby ignoring some
other useful features (e.g., skin color and textures of cloth-
ing) for human detection. [23] obtained good results by us-
ing a richer set of features and partial least squares (PLS),
and showed that PLS weight vectors are good indicators of
the contribution of each feature for human detection.

3. Weighted Spatial Pyramid

In this section, we first explain SPR, and then propose
a new weighted SPR. First, SPR extracts the global feature
from the input image (the top level l = 0). Next, the image
is divided into a sequence of increasingly finer grids on each
pyramid level. Features are extracted from each grid cell on
each pyramid level l, and are concatenated to form one large
feature. Let f l

k ∈ R
d denote the feature extracted from the

cell k on level l, and let c(l) and L denote the number of
cells on the level l and the number of levels, respectively.
The feature vector fs ∈ R

ds , ds = d
∑L−1

l=0 c(l) with SPR
is defined by the following equation:

fs
� =

(
f0

1

�
,f1

1

�
, ...,f1

c(1)

�
, ...,fL−1

1

�
, ...,fL−1

c(L−1)

�)
.

The original SPR [12] defined the number of cells at level l
as c(l) = 4l, and divided each cell at this level into four cells
at the next level l + 1. As the number of levels increases,
the feature fs becomes a huge vector. For this reason, SPR
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is usually used up to level 2 (L = 3). The original SPR is
illustrated in Fig. 2 (a).
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Figure 2. (a) Original Spatial Pyramid Representation. (b) Pro-
posed Weighted Spatial Pyramid Representation

As stated above, because the feature vector with SPR
becomes huge as the number of levels increases, an SPR
vector with large pyramid levels is inefficient for the fol-
lowing learning and testing phases. However, if we stop
feature extraction at a lower pyramid level, the SPR feature
fails to capture fine spatial information. Here, we propose
the weighted SPR, which is a compact SPR that contains
coarse-to-fine spatial information effectively. The standard
SPR usually uses at most 4× 4 cells because of a huge vec-
tor. Our method theoretically can use more finer cells (e.g.,
16×16, 32×32), while the resulting vector has the constant
dimensionality. In a similar way as SPR, the weighted SPR
first extracts the global feature from the input image (the top
level l = 0). Next, the image is divided into a sequence of
increasingly finer grids on each pyramid level. Features are
extracted from each grid cell on each pyramid level l. We
consider that cell k on level l has a weight wl

k ∈ R repre-
senting the importance of the cell. We define the weighted
SPR feature as the weighted sum of features from each cell
on each level. The weighted SPR feature fw ∈ R

d can be
written by the following equation:

fw = w0
1f

0
1 + w1

1f
1
1 + · · · + w1

c(1)f
1
c(1) + · · ·

+wL−1
1 fL−1

1 + · · · + wL−1
c(L−1)f

L−1
c(L−1). (1)

Now, we define a weight vector w ∈ R
dw , dw =

∑L−1
l=0 c(l)

and a feature matrix F ∈ R
d×dw as the following equations:

w =
(
w0

1, w
1
1, ..., w

1
c(1), ..., w

L−1
1 , ..., wL−1

c(L−1)

)�
,

F =
(
f0

1,f
1
1, ...,f

1
c(1), ...,f

L−1
1 , ...,fL−1

c(L−1)

)
.

Using the above w and F , Eq. (1) can be rewritten as the
following simple equation:

fw = Fw. (2)

Suppose that we have a set of weight vectors W = {wi ∈
R

dw}Nw
i=1 obtained under various conditions, the multiple

weighted SPR vectors can be calculated by multiplying the
feature matrix by each weight vector. In fact, the set of
weight vectors corresponds to a set of eigen vectors in the
discriminative SPR. This topic is discussed in Sec 4.2 and
Sec 4.3. Then, we redefine the weighted SPR f

(Nw)
w ∈

R
Nwd by concatenating those multiple vectors as follows:

f
(Nw)
w =

(
(Fw1)�, · · · , (FwNw

)�
)�

. (3)

We expect that the weighted SPR becomes compact and
discriminative if a small number of weights is effectively
selected for image categorization.

Note that the weighted SPR is equal to the single flat-
level SPR [11, 24] with the finest cells when using average
spatial pooling. For simplicity, we now consider an SPR
with levels 0 and 1. We assume that a set of local descriptors
U = {um ∈ R

d}M
m=1 is obtained at level 0. At level 1, the

image is divided into c(1) cells.

U = U1 ∪ U2 ∪ · · · ∪ Uc(1), Ui ∩ Uj = ∅ (i �= j).

The feature at level 0 can be represented using average spa-
tial pooling as follows:

f0
1 =

1
M

∑
ui∈U

ui (4)

A feature at cell k on level 1 can be represented in the same
manner: f1

k = 1
Mk

∑
ui∈Uk

ui. When we plug this equa-
tion into Eq. (4), we have:

f0
1 =

1
M

⎛
⎝c(1)∑

k=1

∑
ui∈Uk

ui

⎞
⎠

=
c(1)∑
k=1

Mk

M

(
1

Mk

∑
ui∈Uk

ui

)
=

c(1)∑
k=1

αkf1
k, (5)

where αk = Mk

M . We let L = 2 in Eq. (1), and plug Eq. (5)
into Eq. (1), so we obtain the following equation:

fw = w0
1f

0
1 +

c(1)∑
i=1

w1
i f1

i

=
c(1)∑
i=1

(w0
1αi + w1

i )f1
i =

c(1)∑
i=1

β1
i f1

i , (6)

where β1
i = w0

1αi + w1
i . Eq. (6) is equal to the weight

maps [11, 24], ignoring the pyramid structure. Average spa-
tial pooling is popular, and is used in BoF. If we apply the
weighted SPR to average spatial pooling, the pyramid struc-
ture becomes of unknown significance. The weighted SPR
becomes of great significance when it is applied to nonlin-
ear spatial pooling (e.g., max spatial pooling [27]).
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4. Discriminative Spatial Pyramid

In this section, we propose a novel representation called
the discriminative SPR that automatically finds the discrim-
inative weights of the weighted SPR. As implementations
of the discriminative SPR, we also propose the PlsSPR and
the FisherSPR. Here, we first explain the relationship be-
tween PLS and canonical correlation analysis (CCA) as the
basis of the proposed representations. Then, we describe
the details of the discriminative SPRs.

4.1. PLS and CCA

PLS is a method to extract common information between
sets of observed variables. The origins of PLS are traced to
nonlinear iterative partial least squares (NIPALS) [26]. The
connection among PLS, CCA, and Fisher Linear Discrimi-
nant Analysis (Fisher LDA) is proved in [1]. According to
[1], we here explain how the modified PLS reduces to the
eigenvalue problem of the between-class covariance matrix.

Now, we assume a set of data D = {(xi,yi)}N
i=1, X =

{xi ∈ R
dx}N

i=1, Y = {yi ∈ R
dy}N

i=1, and transform X and
Y into a new coordinate system: si = a�(xi − x̄), ti =
b�(yi − ȳ), where x̄ = 1

N

∑
i xi, ȳ = 1

N

∑
i yi are the

mean of x, y, respectively. We let Cxy = 1
N

∑
i(xi −

x̄)(yi − ȳ)� be the sample estimate of the cross-product
covariance matrix between X and Y . PLS searches for vec-
tors a and b with unit norm that maximize the sample co-
variance cov(s, t) = 1

N

∑
i siti = a�Cxyb.

max
[cov(s, t)]2

(a�a)(b�b)
(7)

Estimates of the weight vectors a and b are given as the
solution of the following eigenvalue problem:(

0 Cxy

Cyx 0

)(
a
b

)
=
(

λ1 0
0 λ2

)(
a
b

)
,

where λ1, λ2 are eigenvalues, and Cyx = C�
xy .

The correlation corr(s, t) between s, t can be represented
using the covariance cov(s, t) and the variances var(s) =
1
N

∑
i s2

i , var(t) = 1
N

∑
i t2i as follows:

[cov(s, t)]2 = var(s)[corr(s, t)]2var(t). (8)

CCA maximizes corr(s, t), subject to var(s) = 1, var(t) =
1, and thus, PLS can be seen as a form of penalized CCA
with var(s) and var(t). Suppose that our goal is discrim-
ination and that Y space represents a category where the
category information is coded in y with a 1-of-K coding
scheme, the Y space penalty is not meaningful. Therefore,
we consider a new objective function by removing the Y
space penalty from the original objective function:

var(s)[corr(s, t)]2 =
[cov(s, t)]2

var(t)
. (9)

The modified PLS maximizes Eq. (9), subject to the norm
that a is equal to 1 and that the variance var(t) is equal to 1.

max
[cov(s, t)]2

var(t)(a�a)
(10)

An estimate of the weight vector a is given as the solution
of the following eigenvalue problem:

CxyC−1
y Cyxa = λa, (11)

where λ is an eigenvalue, and Cy = 1
N

∑
i(yi − ȳ)(yi −

ȳ)�. Here, [1] proved that CxyC−1
y Cyx is equal to the

between-class covariance matrix Sb. Thus, Eq. (11) can be
rewritten as follows:

Sba = λa. (12)

The modified PLS reduces to the eigenvalue problem of the
between-class covariance matrix.

4.2. PLS Spatial Pyramid

We propose an efficient calculation of discriminative
weights of Eq. (2) based on Eq. (12). Now, we have the
labeled training samples I = {(F i,yi)}N

i=1, fwi = F iw
with K classes {ωk}K

k=1. The between-class covariance
matrix Sb can be written as follows:

Sb =
1
N

K∑
k=1

nk(f̄wk − f̄w)(f̄wk − f̄w)�, (13)

where f̄wk = 1
nk

∑
fwi∈ωk

fwi, f̄w = 1
N

∑
i fwi, and

nk is the number of samples in class ωk. The trace of Sb is
given by:

trSb = w�Σbw, (14)

where

Σb =
1
N

K∑
k=1

nk(Mk − M)�(Mk − M), (15)

Mk = 1
nk

∑
Fi∈ωk

F i is the mean of F i belonging to

the class ωk, and M = 1
N

∑
i F i is the mean of the to-

tal data set. By maximizing Eq. (14) under the condition
w�w = 1, we obtain the weight w as the eigen vector of
the following eigenvalue problem:

Σbw = λw, (16)

where λ is the eigenvalue corresponding to the eigen vector
w. We select the Nw largest eigen values λ1, · · · , λNw

, and
the corresponding eigen vectors w1, · · · ,wNw

.
We call the obtained representation the PlsSPR. The

PlsSPR is concerned with finding discriminative weights of
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each cell on each pyramid level. It is not uncommon for the
feature to be several tens of thousands of dimensions (e.g.,
170,000 in [23]). Solving the eigenvalue problem with a
raw feature is ineffective. On the other hand, our method in
Eq. (16) is the eigenvalue problem of Σb ∈ R

dw×dw . The
total number of cells dw in the SPR is usually at most 100.
Thus, because dw � d, our method can find discriminative
spatial pyramid weights very fast. Moreover, the compu-
tation of the PlsSPW is more stable than that of the Fisher
Spatial Pyramid Weight, which is discussed in the next sec-
tion. In addition, Eq. (16) that uses not the vector, but the
matrix consisting of mid-local features, is considered to be
the generalized PLS.

4.3. Fisher Spatial Pyramid

We propose the FisherSPR to obtain the discriminative
SPR. Let Sw be the within-class covariance matrix of mid-
local features. The Fisher criterion is given by J(w) =
trSb

trSw
. The trace of Sw is given by:

trSw = w�Σww, (17)

where

Σw =
1
N

K∑
k=1

∑
i∈ωk

(F i − Mk)�(F i − Mk). (18)

By maximizing the Fisher criterion under the condition
w�Σww = 1, we obtain the weight vector w as the eigen
vector of the following generalized eigenvalue problem:

Σbw = λΣww, (19)

where λ is the eigenvalue corresponding to the eigen vector
w. We select the Nw largest eigen values λ1, · · · , λNw

, and
the corresponding eigen vectors w1, · · · ,wNw

. We call the
representation with those weight vectors the FisherSPR.

If we apply the FisherSPR to a single-level SPR, the
FisherSPR is equal to that in [11, 24]; therefore, the Fish-
erSPR is the generalized form that includes those methods.
As stated in Sec. 4.1, CCA maximizes corr(s, t), subject
to var(s) = 1, var(t) = 1. Assuming that Y space repre-
sents the category where the category information is coded
in y with a 1-of-K coding scheme, CCA reduces to Fisher
LDA. Thus, the difference between PLS and Fisher LDA is
the penalty var(s), and if var(s) is critical for the discrim-
ination, the FisherSPR is more effective than the PlsSPR.
Similarly in the PlsSPR, Eq. (19) is the generalized eigen-
value problem of Σb ∈ R

dw×dw , Σw ∈ R
dw×dw . Because

dw � d, Eq. (19) can be quickly solved.
However, if Σw is a singular matrix, there is a problem

in terms of numerical stability. To avoid singularity, we can
use Eigen Weight Maps [24] or use the regularization term;
however, determining these parameters is also difficult. In

addition, if we use one-vs-the-rest classifiers for a large
number of classes, the variance of the “rest class” is likely
to be large. The Fisher criterion minimizes the within-class
variance while maximizes the between-class variance, and
those optimizations are mutually related. When variance
of the rest class is large, minimizing the within-class vari-
ance becomes dominant, while maximizing the between-
class variance is relatively ignored.

5. Experiment

In this experiment, we compare the original SPR with
our discriminative SPRs (PlsSPR and FisherSPR). Al-
though the discriminative SPR is a general framework and
can be applied to any combinations of local descriptors, spa-
tial pooling, and classifiers, we apply it to ScSPM and linear
SVMs [27]. The reasons are as follows:

• The combination of ScSPM and linear SVMs is one
of the state-of-the-art methods [27, 5, 17]. Thus, this
method is appropriate for the baseline.

• The discriminative SPR can find the optimal weight for
each cell, but cannot find the weights for each element
of the feature vector. On the other hand, sparse coding
can be seen to discover the importance for each ele-
ment of the feature vector, and thus, the discriminative
SPR and sparse coding are mutually beneficial.

• As stated in Sec. 3, the weighted SPR becomes of
great significance when it is applied to nonlinear spa-
tial pooling, such as max spatial pooling [27].

In the training step, the feature vector in each cell is
built with SIFT extraction followed by sparse coding and
max spatial pooling. The weights of the discriminative SPR
are learned with those features using Eq. (16) or Eq. (19).
Then, we plug the obtained weights into Eq. (3) and obtain
the discriminative SPR. Finally, the classifiers are learned
with the discriminative SPR features and linear SVMs. In
the testing step, the features are built by SIFT + sparse cod-
ing + max spatial pooling, and the discriminative SPR can
be obtained with those features and discriminative weights.
The classification results are obtained by inputting the dis-
criminative SPR features into learned linear SVMs. We
used the parameters of ScSPM as defaults, which are used
in the matlab codes1 distributed by [27].

We tested the 15 Scenes, Caltech101, and Caltech256
datasets. We investigated the effects of the dimension of
the discriminative SPRs for the classification performance.
Note that the dimensions of discriminative SPR Nwd is pro-
portional to the number of eigenvectors in Eqs (16) and (19).
Moreover, following [4], we investigated two methods for
learning the weights:

1http://www.ifp.illinois.edu/ jyang29/ScSPM.htm
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GSPW Global Spatial Pyramid Weights. Instead of giving
a fixed weight to each cell at each pyramid level, we
learn the weights that give the best classification per-
formance over all the categories.

CSPW Class-Specific Spatial Pyramid Weights. Instead of
learning the weights that are common across all the
classes, the weights are learned for each class sepa-
rately by optimizing the classification performance for
that class using a one-vs-the-rest classification.

5.1. 15 Scenes

We experimented with a commonly used scene classi-
fication benchmark dataset by Lazebnik et al., [12] (15
Scenes dataset). The 15 Scenes dataset consists of the gray
images of OT8 [19], plus seven additional classes. OT8 con-
sists of 2,688 color images of eight classes. Each class has
sample images from 260 to 410. In total, it contains 4,492
gray images. We randomly chose 100 training images for
each class. We used the remaining samples as test data, and
calculated the mean of the classification rate for each class.
This score was averaged over 10 trials, randomly replacing
the training and test samples. This is the same methodology
as was used in the previous studies.

Figure 3 shows the performance of a variety of the dis-
criminative SPRs. The baseline method is ScSPM + linear
SVMs with level 0 (1 × 1, ds = 1), level 0-1 (1 × 1, 2 × 2,
ds = 5), and level 0-2 (1 × 1, 2 × 2, 4 × 4, ds = 21)
without spatial weights. We used two pyramid structures
for our representations: level 0-2 (dw = 21), and level 0-3
(1 × 1, 2 × 2, 4 × 4, 8 × 8, dw = 85). All discriminative
SPRs outperform ScSPM in low dimension. In high dimen-
sion, the discriminative SPRs are comparable to or slightly
better than ScSPM. PlsSPR + CSPW or PlsSPR + GSPW
with level 0-3 obtain the highest performance. Their classi-
fication scores saturate at Nw = 7. The direct comparison
between ScSPM and PlsSPR + CSPW is shown in Table
1. In the 15 Scene dataset, there is no difference between
GSPWs and CSPWs. The PlsSPRs are slightly better than
the FisherSPRs.
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Figure 3. Performance of discriminative SPR on 15 Scenes.

Table 1. Classification rate [%] on 15 Scenes. PlsSPR was applied
to level 0-3 (1 × 1, 2 × 2, 4 × 4, 8 × 8) with CSPW.

Algorithms Level 0 Level 0-1 Level 0-2
Nw = ds = 1 Nw = ds = 5 Nw = ds = 21

ScSPM 68.39 ± 0.56 77.86 ± 0.96 80.91 ± 0.51
PlsSPR 73.89 ± 0.89 81.69 ± 0.54 81.81 ± 0.54

Here, we discuss the extra computational costs of the dis-
criminative SPRs. In the training step, the PlsSPR and the
FisherSPR require the eigenvalue problem (Eq. (16)) and
the generalized eigenvalue problem (Eq. (19)) once, respec-
tively. The CSPWs must calculate Eq. (16) or Eq. (19) K
times. In both the training and testing steps, the features are
transformed with the weights. To obtain the final feature,
GSPWs calculate the transformation of Eq. (2) Nw times,
and the CSPWs K × Nw times. The calculation costs of
Eq. (16), Eq. (19), and Eq. (2) are shown in Table 2. These
computational costs on 15 Scenes were evaluated on a dual
Xeon5160 with 14 GB RAM. As shown, the extra compu-
tational costs for both training and testing are low. Consid-
ering that the discriminative SPRs obtain good performance
in low dimension, the discriminative SPRs are highly effec-
tive on the 15 Scenes dataset.

Table 2. Extra calculation costs on 15 Scenes.
Training [ms] Training [ms] Compressing [µs]

PlsSPR Eq. (16) FisherSPR Eq. (19) Eq. (2)
189.2 ± 82.5 404.7 ± 39.8 55.9 ± 9.4

5.2. Caltech101

Caltech101 [9] is the de-facto, standard, object-
recognition dataset. This dataset consists of images from
101 object categories and one background class, and con-
tains images from 31 to 800 per category. This dataset has
large intra-class variety. The spatial information is essen-
tial for image recognition, because in this dataset, the im-
ages in the same category are well centered. To evaluate
the classification performance, we followed the most stan-
dard methodology. 15 images were randomly selected from
all 102 categories for training purposes, and the remaining
images were used for testing. The classification score was
averaged over 10 trials.

Figure 4 shows the performance of a variety of the dis-
criminative SPRs on Caltech101. The baseline method is
ScSPM + linear SVMs with level 0, level 0-1, and level
0-2 without spatial weights. We used two pyramid struc-
tures for the discriminative SPRs: level 0-2 and level 0-3.
All of the discriminative SPRs outperform ScSPM in low
dimension. In high dimension, our methods are compara-
ble to or slightly better than ScSPM, except for FisherSPR
+ CSPW + Level 0-2, because as discussed in Sec. 4.3,
CSPW uses one-vs-the-rest classifiers for a large number of
classes (102 classes), and hence, the variance of the “rest
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class” becomes large. This condition inhibits the effect of
the variance of the between-class relatively, and lowers the
discriminative power. PlsSPR + CSPW with level 0-3 out-
puts the highest performance. Their classification scores
saturate at Nw = 9. The direct comparison between ScSPM
and PlsSPR + CSPW is shown in Table 3. The computation
costs are the same as for the 15 Scenes dataset, if the same
Nw is used.
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Figure 4. Performance of discriminative SPR on Caltech101.

Table 3. Classification rate [%] on Caltech101. PlsSPR was ap-
plied to level 0-3 (1 × 1, 2 × 2, 4 × 4, 8 × 8) with CSPW.

Algorithms Level 0 Level 0-1 Level 0-2
Nw = ds = 1 Nw = ds = 5 Nw = ds = 21

ScSPM 41.62 ± 0.57 58.90 ± 0.61 66.40 ± 0.55
PlsSPR 49.88 ± 0.36 65.26 ± 0.83 67.21 ± 0.67

Figure 5 shows the absolute value of the spatial pyra-
mid weights with PlsSPR + CSPW + Level 0-3 on Cal-
tech101. This figure represents that the optimal discrimina-
tive weights can be obtained for each cell on each pyramid
level with our method. For example, the most distinctive
cell is the cell at level 0 for “windsor chair,” the upper right
cell at level 1 for “revolver,” and the both side cells at level
2 for “watch.” Furthermore, the most important cells appear
by level 2, therefore, the fact that many studies have used
SPM with level 0-2 is supported by this experiment.

5.3. Caltech256

Caltech256 [10] consists of images from 256 object cat-
egories. This dataset contains images from 80 to 827 per
category. The significance of this database is its large inter-
class variability, as well as an intra-class variability larger
than that found in Caltech101. Moreover, there is no align-
ment among the object categories. To evaluate the classi-
fication performance, we followed the common methodol-
ogy. Fifteen images were randomly selected from all 256
categories for training purposes, and the remaining images
were used for testing. The classification score was averaged
over 10 trials.

Figure 6 shows the performance of a variety of discrim-
inative SPRs on Caltech256. The baseline method is Sc-

Level 0 Level 1 Level 2 Level 3

0.0 0.2 0.4 0.0 0.2 0.4 0.0 0.2 0.4 0.0 0.2 0.4
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watch
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0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2

0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2

0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2

0.2 0.20.20.20.0 0.0 0.0 0.0

Figure 5. Some examples of discriminative spatial pyramid
weights on Caltech101 dataset with PlsSPR+CSPW.

SPM + linear SVMs, which is the same as that used in the
previous experiments. We used only one pyramid structure
on level 0-2, because of a shortage of the main memory.
Our methods outperform ScSPM in low dimension, except
for FisherSPR + CSPW, whose score is worse than that of
Caltech101. This is because as the number of classes in-
creases from 102 to 256, the variance of the “rest class” be-
comes larger than that of Caltech101. Among our methods,
PlsSPR + CSPW produces the highest performance. Their
classification scores saturate at Nw = 9. The direct com-
parison between ScSPM and PlsSPR + CSPW is shown in
Table 4. For the computation costs, see the discussion in the
15 Scenes experiment.
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Figure 6. Performance of discriminative SPR on Caltech256.
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Table 4. Classification rate [%] on Caltech256. PlsSPR was ap-
plied to level 0-2 (1 × 1, 2 × 2, 4 × 4) with CSPW.

Algorithms Level 0 Level 0-1 Level 0-2
Nw = ds = 1 Nw = ds = 5 Nw = ds = 21

ScSPM 18.02 ± 0.30 26.08 ± 0.19 30.14 ± 0.46
PlsSPR 21.03 ± 0.30 28.54 ± 0.20 30.24 ± 0.34

6. Conclusion

In this paper, we propose the discriminative SPR. As im-
plementations of the discriminative SPR, we also propose
the PlsSPR and the FisherSPR. Our methods form the fea-
ture as a weighted sum of the mid-local features over all of
the pyramid levels. The weights are automatically selected
to maximize the discriminative power. By using datasets,
our methods showed high performance, especially in low
dimension. The discriminative SPR can suggest distinctive
cells and pyramid levels simultaneously. In future, we will
apply the discriminative SPR to other local descriptors, spa-
tial pooling, and classifiers. The weights of the discrimi-
native SPR are permitted to have negative values, and the
weight vector is dense. Non-negative decomposition is re-
lated to the extraction of the relevant parts from images [13].
Thus, we will extend this study to incorporate both non-
negativity and sparseness into the discriminative SPR.
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