
Neural Networks 22 (2009) 144–154
Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

2009 Special Issue

Cross-modal and scale-free action representations through enaction
Alex Pitti a,∗, Hassan Alirezaei b, Yasuo Kuniyoshi a,b
a ERATO Synergistic Intelligence Project, JST, The University of Tokyo, 113-8656 Tokyo, Japan
b ISI Laboratory, Department of Mechano-Informatics, The University of Tokyo, 113-8656 Tokyo, Japan

a r t i c l e i n f o

Keywords:
Mirror neurons
Action understanding
STDP
Polychronization

a b s t r a c t

Embodied action representation and action understanding are the first steps to understand what it
means to communicate. We present a biologically plausible mechanism to the representation and the
recognition of actions in a neural network with spiking neurons based on the learning mechanism of
spike-timing-dependent plasticity (STDP). We show how grasping is represented through the multi-
modal integration between the vision and tactile maps across multiple temporal scales. The network
evolves into a small-world organizationwith scale-free dynamics promoting efficient inter-modal binding
of the neural assemblies with accurate timing. Finally, it acquires the qualitative properties of the mirror
neuron system to trigger an observed action performed by someone else.

© 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Before articulating the first words, the development of social
cognition starts with non-verbal communication and the under-
standing of actions performedby others. Perception ofmovements,
gestures and actions of someone else can help us understand (or
guess) about his intentions, his desires, and his emotions.
These capacities of non-verbal communication are argued to be

formed from the existence of pragmatic representations, generally
implicit arose from the intertwining between perception and
action within the brain (Hiraki, 2006; Rizzolatti, Fadiga, Fogassi,
& Gallese, 1996), they constitute the body schema that activate
automatically the motoric representations in the prefrontal and
frontal area. It follows that, observing someone else acting,
recognizing it, and understanding it may result then from a
direct pairing between the visually observed action and our
own motoric representation of it. Differently said, the observer
mentally ‘‘simulates’’ the action from his own experience of
it (Gallese, 2005), leading then to a ‘‘resonance entrainment’’ in
his motor system (Rizzolatti & Craighero, 2004; Rizzolatti et al.,
1996; Rizzolatti, Fogassi, & Gallese, 2001). This phenomenon,
termed mirror neurons – located in the F5 area in the pre-motor
cortex (Gallese, Fadiga, Fogassi, & Rizzolatti, 1996) – describes
the neurons’ response to action-related visual stimuli, such as
graspable object or action of other individuals.
Of particular importance, mirror neurons show temporal

congruence between visual and motor neurons (Oztop, Kawato,
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& Arbib, 2006): mirror neurons fire with accurate timing to both
observed and to hidden end-state actions. Visual representations
of an observed action are therefore temporally linked to our
own motor representations of the same action, a product of
associative learning in line with the generalist theories of
imitation (Brass & Heyes, 2005; Heyes, 2001). According to them,
what facilitates imitation is due to the general organization of
motor control rather than a special purpose mechanism dedicated
to imitation. Mirror neurons are thus not innate systems, but
rather acquired from learned perceptual-motor links. Other
evidences from developmental psychology tend to confirm that
timing between sensory and motor representation is crucial for
babies in order to acquire the significance of one action. For
instance, infants identify soon the timing correlations and the
sequential order of events; e.g., synchrony and contingency (Prince
& Hollich, 2005). Moreover, in interceptive actions such as
reaching and grasping, synchrony detection between different
sensory and/or motor channels is particularly important for
detecting the right timing for contact or that of preparatory
actions (Corbetta, Thelen, & Johnson, 2000; Prince &Hollich, 2005).
More complex cognitive abilities – e.g., imitation, self-agency
and social interaction – may be developed from these newly
acquired affordances (Heyes, 2004;Meltzoff &Moore, 1977; Nadel,
Prepin, & Okanda, 2005; Rochat, 2003; Zukow-Goldring, 2005).
Taken together, these considerations suggest that exploiting the
mechanism(s) regulating timing at the neural level can reveal
some of the principle(s) behind action representation, cognitive
development and social interaction.
At the neural level, the regulation mechanism responsible for

the timing delays between the spikes is the one of spike-timing-
dependent plasticity termed STDP (cf. Bi and Poo (1998) and
also Abbott and Nelson (2000)). Temporal structure of complex
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actions, for instance, are decomposed with millisecond order
precision into ordered sequences of neural rules in canonicalmotor
neurons and in the mirror neuron system (Changeux & DeBevoise,
2004; Lestou, Pollick, & Kourtzi, 2008; Rizzolatti et al., 1996).
Precisely, information processing in large networks of spiking
neurons is performed both in the temporal domain (i.e., time delay
between the spikes) and in the spatial domain (i.e., spatial location
of the neurons). It is therefore the coherency of the local dynamics
among the neural pairs that will (or will not) produce a coherency
at the network scale—we mean a functional integration among
the different parallel processes in the maps into a dynamical
representation of the body in action.
Ourmain objective is to understandhowsuch global integration

in the neural dynamics is produced during physical interactions.
How functional connectivity in the network permits the represen-
tation of one action from the differentiated processes done in the
sensor and themotormaps having a structuredmulti-modal activ-
ity of the neural code. In this paper, we demonstrate how actions
are represented at the neural level as accurate spatio-temporal
clusters sparsely encoded over distant neural maps ruled by the
learning mechanism of STDP. We set up an experiment of grasp-
ing, in which the temporal sequence of the action is acquired (or
‘‘represented’’) through the neural interaction between vision and
tactilemodalities. This functional integration – termed ‘‘vertical as-
sociation’’ by Brass and Heyes (2005) – between the sensory and
motor maps produces the emergent structure of reentrant or mir-
roring maps, a result of their entanglement due to embodiment.
Interestingly, reentry achieves the cross-modal linkage between
the tactile and vision maps making the neural system earn the
capabilities of associative memory. For instance, inter-modal ac-
tivation (capacity to trigger one modality from another) and antic-
ipation (capacity to anticipate the next state of the other modality)
combining the feature of a coupled forward and inverse model,
predicting the sensory consequences of a motor command and
transforming a desired sensory state into a motor command that
can achieve it (Oztop et al., 2006). Since the network produces
inter-modal associations, information may be retrieved back from
the activation of another modality. It follows that the observation
of one action (i.e., visual information available only) will induce
the simulation of themissingmodality (i.e., haptic perception). The
qualitative property observed in the mirror neuron system.
In the first section, we present the framework employed

to design our neural network. Thereinafter, we study how
the network acquires appropriate perception–action matching
from repeated experiences of seeing and touching permitting
to reproduce the qualitative properties of canonical and mirror
neurons: firing to executed actions and to observed actions. We
then discuss the relevance of our findings to cross-modal binding
and to functional integration in the brain. We advance that the
neural organization of the mirror neuron system is mediated by
the regulatory mechanism of STDP for action representation and
action understanding using the same pathways.

2. Framework

In comparison with classical feed-forward neural networks,
information processing in recurrent networks of spiking neurons
is not based on the statistical modeling of the available data
but rather on the parallel processing of the neurons combined
in a self-organized fashion (i.e., assembling the relative spatio-
temporal coordinations). We define, in this part, the network
architecture, the neuron model used in our experiments and the
reinforcement mechanism of spike-timing-dependent plasticity
(STDP) that regulates the dynamics of the neurons from each
other. We then detail the design of the retina model (biologically
inspired) used for the visual processing in our experiments to the
transforming of intensity-based images into spike trains.
2.1. Spiking neuron model

The neurons are defined with the formal model (temporal
derivatives) proposed by Izhikevich [cf. Izhikevich (2003)]:

v′ = 0.04v2 + 5v + 140− u+ I

u′ = a(bv − u)
(1)

with v representing the membrane potential of the neuron in mV
and u a membrane recovery variable – v′ and u′ their respective
temporal derivatives. The neurons are externally triggered by the
signal I and their dynamics are resetted after any spiking

if v ≥ +30 mV, then
{
v← c
u← u+ d. (2)

The variables set {a, b, c, d} defines the neuron attributes whether
excitatory (a; b) = (0.02; 0.2) and (c; d) = (−65; 8), or inhibi-
tory; (a; b) = (0.02; 0.25) and (c; d) = (−65; 2). For further
details, see Izhikevich (2003) and Izhikevich, Gally, and Edelman
(2004).

2.2. Recurrent neural network architecture

In our experiments, the networks are composed of large
ensembles of neural units. The neurons are connected to each other
with arbitrarily short- and long-range synaptic connections (up to
one hundred synaptic links for each neurons) and with variable
time delays between the neurons (arbitrarily defined up to 20
ms). By doing so, information is sparsely coded in the recurrent
networkswhich facilitates the recall ofmemories from partial cues
and allow for denser and more reliable storage (Aoki & Aoyagi,
2007). Without external constraints from the environment, no
particular organizational structure is visible at the system level
which gives rise to a spontaneous-like activity in its dynamics.
We explain in the following part the details on the mecha-

nism of spike-timing-dependent plasticity (STDP) on which the
networks rely on.

2.3. Reinforcement mechanism of spike-timing-dependent plasticity

STDP is the bidirectional adaptation mechanism which dynam-
ically regulates the long-term potentiation (LTP) and long-term
depression (LTD) in synaptic plasticity readjusting the synaptic
weights to the precise timing interval between the initiating and
the targeting neurons (Abbott & Nelson, 2000; Bi & Poo, 1998;
Song, Miller, & Abbott, 2000). They are significant mechanisms for
both activity-dependent development of neural circuitry and adult
memory storage. The time delay1t = tpost− tpre between the pre-
synaptic neuron spiking tpre and the post-synaptic neuron firing
tpost corresponds to the interval range of activation of their synap-
tic plasticity and weight adaptation1c.

cpre,post = cpre,post +1c (3)

1c(1t) =
{
A+ exp(1t/τ+) if1t < 0
−A− exp(−1t/τ−) if1t ≥ 0. (4)

The synaptic weights decay exponentially depending on the time
delay 1t between the pre- and post-synaptic neurons in the
interval range [τ−, τ+] [see Fig. 1(a)]. Each time a post-synaptic
neuron fires, its synaptic weights cpre,post are decreased by A−
(LTD), and each time a synapse receives an action potential, its
synaptic weight cpre,post is incremented by an amount A+ (LTP). In
all our experiments, we set −A− = A+ = 1 and τ− = τ+ =
20 ms. Over time, pairs of neurons are consolidated and can form
long-range clusters of parallel processes [see Fig. 1(b) and Fig. 2],
the idea behind polychronization coined by Izhikevich (2006) and
Izhikevich et al. (2004) that we present hereinafter.
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Fig. 1. Mechanism of STDP with−A+ = A− = +1 and τ− = τ+ = 20 ms. (a) Each
time a post-synaptic neuron fires, its synaptic weight is decreased by A− , and each
time a synapse receives an action potential, its synaptic weight is incremented by
an amountA+ . (b) Neuronal groups are formed from the dynamical linkage between
the neural pairs (hierarchical representations).

Spike-timing inNeuronal Groups. STDP coordinates the dynamics
between only neural pairs. Far from being a disadvantage, its
action is interesting since it permits to produce a flexible system
organization based on many very small scripts. Rich information,
for instance, can be represented in the network spatially and
temporally at the lowest level by neural pairs built into hierarchies
of assembled complex patterns. Following this idea, STDP has for
some respect similar attributes with the Bayesian rule. The timing-
dependent synaptic activation of the neuron neuronpost by the
activating neuron neuronpre can be devised as a conditional rule
between the two units in the form of a script, for instance: if
neuronpre fires at time tpre , then neuronpost fires at
time tpost = tpre +1t .
Such pragmatic timing rules between two neurons represent

the smallest ‘‘quanta’’ of information possible to encode. They
form, inside the network, a repertoire of primitives that can beused
for example to model the motoric system in order to constitute
a ‘‘grammar’’ of action primitives (Rizzolatti & Arbib, 1998). It
follows that more complex rules – or abstract representations of
actions and behaviors – can be constructed from the dynamical
assembling of these basic pairs into long-range spatio-temporal
clusters of very short conditional codes see Fig. 2.
Moreover, if the network is sufficiently large, neurons may ex-

hibit non-trivial connection assembling apparent to a spontaneous
activity or to self-organization. This spontaneous activity may en-
able then the system to process information beyond its availability
as exposed in Fig. 2: the activation at precise timing of particular
neurons before t1 generates the reconstructionprocess of thewhole
spatio-temporal cluster till t5. The sequence is retrieved from par-
tial information and one may not see the complete sequence if the
first neurons do not fire. To some extent, this retrieval of spatio-
temporal patterns can be seen as a ‘‘trajectory attractor’’. Once
an event is re-activated, it follows the ongoing synchronization
of other units firing—the idea behind chaos itinerancy (Kuniyoshi,
Yorozu, Inaba, & Inoue, 2003; Tsuda, 1991; Tsuda, Fujii, Tadokoro,
Yasuoka, & Yamaguti, 2004). To pursue our analogy with Bayesian
statistics, we can interpret the long-range spatio-temporal clusters
as enfolded causal chains of scripts (as for Markovian tree) e.g.,

if X fires at t1, then Y , Z fire at resp. t2 and t3, and
if Y , Z fire at resp. t2 and t3 then etc . . .
In this fashion, the neuronal groups form hierarchies of differ-

ent level descriptions set up from their basic neural bricks in a
bottom–up fashion, in line with recent biological data supporting
that the motoric system is organized into hierarchical representa-
tions (Lestou et al., 2008). Although some computational frame-
works have been proposed to model hierarchical representations
for action representation (Demiris & Simmons, 2006; Wolpert,
Doya, & Kawato, 2003; Wolpert, Ghahramani, & Flanagan, 2001),
they do not emphasize the importance of timing as the neuro-
science dynamical systems viewpoints do (Edelman, 1987; Kelso,
1995; Rabinovich, Varona, Selverston, & Abarbanel, 2006; Tsuda,
1991), which we think important for its functioning. Besides it,
polychronization of neural pairs might establish a ‘‘vertical associ-
ation’’ between parallel neural processes to represent actions and
to re-enact them.

2.4. Retina model

The vision map is coarsely inspired by the serial process-
ing done in the retina transforming a video sequence into spike
trains (Wohrer, Kornprobst, & Viéville, 2006). The successive trans-
formations done in the ganglion layers realize a complex filter-
ing on the images into a set of spikes (see Fig. 3). The mechanism
discriminates both the spatial and the temporal information from
a scene, apparent to a spatio-temporal convolution filtering: the
combination of a contrast enhancement on the images (a spatial
edge refining) sensitive to ‘‘temporal edges’’ (a processing appar-
ent to optical flow making the neurons trigger to moving objects
only). The filtering is modeled with the two-pass Gaussian blur-
ring in the spatial domain in the two layers VA and VB (detecting
the smooth areas in the image) convolved temporally (detecting
temporal edges, high-pass temporal filter):

VAµA,σA (x, y, t) =
1

2πσ 2A
e−f (x,y,µA)/2σ

2
A .

VBµB,σB (x, y, t) =
VAµA,σA
2πσ 2B

e−f (x,y,µB)/2σ
2
B .

(5)
Fig. 2. Self-organization and hierarchical representations. High level neuronal groups are formed from the assembling of lowest level neural pairs self-arranged in a
bottom–up fashion. Accurate information about the timing and the location of spikes permit to have a flexible system organization to represent complex sensori-motor
structures into long-range spatio-temporal clusters. One of the ideas behind polychronization of Izhikevich (2006).
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Fig. 3. Retina model. Rough architecture of the information treatment done in the
retina transforming a video sequence into spikes trains. The two layers VA and VB
process a successive spatial filtering of the visual inputs which are then convolved
together producing a spatio-temporal filtering of the visual inputs into spike trains.

with f (x, y, z) = (x−z)2+(y−z)2,µ and σ respectively the center
and the variance of the convolutionwith values {µA, σA} = {0, 1.0}
and {µB, σB} = {0, 0.5}. The pixel output of the retina layer located
at {x, y} provides the excitatory current distribution, Ii(t) to its
associated neuron i Eq. (1) with:
Ii(t) = VBσB,τB (x, y, t)− VAσA,τA (x, y, t + 1). (6)

3. Experiments of eye–hand coordination and grasping

We reproduce the experimental series conducted by Rizzolatti
et al. (1996) illustrating the qualitative aspects of mirror neurons
and of canonical neurons: inter-modal binding, action represen-
tation and action understanding with temporal constraint. These
neurons combine visuo-motor properties to represent one action
sequence and to fire at precise timing. In our experiments, we in-
vestigate the conditions for such situation to arise in a network
of spiking neurons that would lead from the temporal linkage be-
tween the visuo-tactile maps to actions representation. We count,
to this end, on the regulating roles of STDP and of the body (em-
bodiment) to coordinate the neuron dynamics to the timing inte-
gration among the maps.
In the first part, we conduct some repeated experiences of

visually perceived acts (i.e., seeing and touching one object) to be
mapped in the neural system in the form of linked visuo-tactile
representations (encoding both vision and tactile information).
Over time, we expect the network to acquire the direct matching
from behaviors to neural dynamics. As the representation of
physical actions is fetched into the network as multi-modal
patterns, it would be possible then to access one modality from
the activation of the other. In the second part, we consider
how the network integration will permit to access one missing
modality from the activation of another one for instance to the
understanding of actions performed by others, when no tactile
information is received.

3.1. Description of the experiment

The experiment consists of repeated executions of the action
sequence associated to grasping (i.e., reaching the cup – time
to contact – grasp – tearing) till convergence of the network
dynamics to a stable organization. A schematic of the experiment
is presented in Fig. 5. During physical interactions, the vision and
tactile maps receive their respective information; a time-line of
the action sequence ‘‘seen’’ from the sensor maps is presented
in Fig. 4. The vision map receives the pre-processed signals from
the retina, the tactile map receives the associated force gradient
at the object surface. Since we consider the timing information
particularly important (e.g., time-to-contact), we assume that this
information can either come from the fingertips or from the object
surface. We chose the latter solution for practical reasons.
The visual map is composed of 5400 neurons receiving the

output signal from the pixel associated with; 90 × 60 camera
resolutionwhich corresponds to 5400 pixels. Their value, binarized
after being filtered by the retina layers, are then normalized to
[0; 20] and fed to their relative neurons input I in Eq. (1). The
correspondence equation between the pixel coordinates {i, j} to
the neural index, neuron_ID, is: neuron_ID = i× 90+ j.
Information at the tactile sensor surface is sampled with

0.5mm2 resolution into a data grid of 1000 samples (details in A.1).
Each sample is associated to one neuron in the tactile map and
1000 neurons are composing the tactile map. Below 1 N force
pressure, the tactile neurons receive no input value from their
corresponding sample, I = 0, whereas above 1 N force pressure,
each sample triggers their corresponding neuron with I = 20
(see Eq. (1)). The two maps are composed of eighty percent of the
neurons present in the whole network, all excitatory (6400 units).
The other twenty percent (2000 units) are inhibitory neurons
added to stabilize the global system. Finally, each neuron, either
excitatory or inhibitory, is initially connected to one hundred
others arbitrarily selected within the global network with equal
synaptic weight (cinit = 5). Under this condition, the ensemble
forms a sparse network with no functional connections before
learning. Since the inhibitory neuron activity do not correspond
to any representational patterns, we will not display them in the
following sections.

3.2. Learning eye–hand visuo-tactile coordination

Experiencing grasping. Perceiving the inter-modal and temporal
correlations is an important factor for learning the significance of
actions, i.e., to decompose the sequential order of goal-directed
movements and to distinguish between them the means and
ends (Falck-Ytter, Gredeback, & von Hofsten, 2006). Implicit
temporal relations between neural dynamics permit to recognize
and to detect if one particular event in the sequence order has
occurred or not. This role is held in our experiments by STDP to
the detection of coincidental events at the neural level.
For instance, when experiencing grasping, the neurons trigger

to the synchronous spatio-temporal events of the scene extracted
from the sensors. The firing patterns permit to deduce the signals’
‘‘hidden causal structure’’ that discriminates the whole sequence
order into action primitives from its preparation to its execution.
The processing done in the visual map and in the tactile sensors

permits easily to distinguish the three phases of grasping and to
discern its temporal structure (see Fig. 4):

phase 1 reaching, the period before contact with the object,
phase 2 grasping, the time to contact and touching,
phase 3 tearing, the period when the person handles the object.

The events in the two maps can serve then to construct time-
based conditional rules through STDP. The saliency map produced
from the retina (Section 2.4), for instance, plays a major role to
filter all the static objects from the scene: the output of the retina
gets the vision neurons to be sensitive to the moving objects only.
Hence, before the grasping at t = t0, the device is completely
filtered from the scene and only the hand motion (i.e., its spatial
contour) is actively retrieved at t = t1. This interval corresponds
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Fig. 4. Temporal structure of grasping. Grasping sequence seen from the retina and of the skin sensors. Before grasping (t < t1), the retina detects only the temporal
changes about the hand motion in the direction of the cup: the spatial information about the cup is filtered. When grasping the object (t = t1), joint detection of hand
motion contingent to the cup motion and the tactile activity corresponding to a coordination in the neural dynamics (synchronization among the maps). Temporal rules
about the sequential order of the event are then associated to a neural representation into the network.
Fig. 5. Schematic of the experiment. The experiencing of co-occurrent visuo-tactile
perception during grasping (in the upper-left corner) by the network (bottom-right
corner) is done by receiving the incoming information from the camera and from
the pressure sensitive device.

to the first phase of the action sequence. The following one stands
for the period of time-to-contact at t = t2 and of grasping,
when the hand induces some involuntary small perturbances and
position changes in the object. These disturbances, accurately
detected in the two maps, constitute a unique event distinguished
in both maps as the inter-modal grouping of the ‘‘hand-device’’
representation. We analyze in the next section how the network
structures its dynamics to categorize the information coming from
the sensory inputs.
Network structuring. When experiencing grasping, the network
structures its dynamics following the STDP rule: the neuron firing
within 1t = 40ms latency are wiring together. The temporal
coherency between the neurons is the principal factor for their
linkage; the location of the neurons is taken into account through
the synaptic conduction latency between two spikes. Following
this, the neurons can have therefore either short- and long-
range connections which can then support segregation within the
maps and integration between them. Over time, they may form
coherent pairs and clusters associated to the particular experience
of grasping with other neurons belonging to the same map or to
others. It is this aspect of the network, its functional integration,
that we want to analyze in Fig. 6: Fig. 6(a) displays the evolution
of the synaptic weights distribution during the learning stage
and Fig. 6(b) reproduces the distribution of the paired neurons
belonging to the same map or to different maps. This second
measure tries to capture quantitatively the network’s structural
organization evolution. On the one hand, the network level of
intra-modal specialization, Iintra, corresponds to the information
processed between the neurons of the samemaps (i.e., the number
of synaptic links). On the other hand, the network level of inter-
modal integration, Iinter, corresponds to the information exchanged
between the neurons belonging to different maps (i.e., the number
of synaptic links). The third graph in Fig. 6(c) plots the connection
matrix between the pre- and post-synaptic neurons belonging to
the two maps.
An interpretation of the graphs can be given as follows. The

distribution of the neurons’ synaptic weights, sharply centered
around the unique value 6.0 in Fig. 6(a) in red, indicates a



A. Pitti et al. / Neural Networks 22 (2009) 144–154 149
Fig. 6. Network structural organization evolution. Histogram of the synaptic
weights (a). Evolution distribution rates of maps’ interaction among neurons
belonging to the same map Iintra and interaction of neurons belonging to other
maps Iinter (b). In (c), the connection matrix between the pre-synaptic and the post-
synaptic neurons belonging to the somatosensory map (S) and to the visual map
(V). (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

uniform structure: the neural network, before enaction, has no
particular organization. The neurons – which are at first arbitrarily
connected – will bring forth then an intricated structure in the
network similar to a spontaneous random-like activity (Poisson-
like distribution). This situation, however, dramatically changes at
the beginning of the learning stage when the network receives
the contingent visual and tactile information. In this stage, a
hierarchical structuring of the network is operating dynamically
inside and between the maps, see Fig. 6(b). The vision and tactile
maps are self-organizing their internal dynamics while during the
same time, at the network level, the maps are also exchanging
information.
This stage corresponds to a complexification of the network

exhibiting a high degree of specialization inside the maps
(i.e., Iintra � 0) and a high degree of integration between the maps
(i.e., Iinter � 0). This situation is shown by the different evolution
of the two curves of Iintra and Iinter engaged inside the network in
(b): two processes are taking place, one ‘‘horizontal’’, inside the
maps and the other ‘‘vertical’’, between them. Furthermore, these
processes are also asymmetric since the density distribution of the
synaptic connections from the neurons of the somatosensory map
to the neurons in the visual map, IS→V , is slightly denser than in
the opposite direction, IV→S in (c). A structuring of the network is
at work, not symmetric, that corresponds to a developmental stage
of functional integration.
Enacted experience. After the learning stage, we reconduct the

whole action sequence from reaching to grasping (see Fig. 4) and
analyze the network response. The neural activity in the vision and
tactile maps during the enacted experience are plotted in Fig. 7
where the black line at t = 2.3 s. indicates the precise time-to-
contact. The red lines define the synaptic links starting from the
pre-synaptic neurons of the vision map, whereas the lines in cyan
Fig. 7. Spike rate andneural dynamics in the visual and tactilemaps during physical
interactions (resp. top and bottom). The whole action sequence is exposed from
seeing, reaching the cup, the time to contact, then touching and grasping (see also
Fig. 8). In red (resp. cyan), the synaptic activation from the neurons of the visionmap
(resp. tactile map). Processes done in the network are constituted from the parallel
neural firings between the two maps. The visuo-haptic patterns are not randomly
activated but synchronized and functionally assembled. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article.)

represent the synaptic links starting from the neurons of the tactile
map. The spike rate of the correspondent map’s distribution with
the same color code is plotted in the upper-side region with a
resolution of 100 spikes per 100 ms.
Despite the very broad activity in the network, one can observe

a clear discrimination of the neural activity before and after
grasping. The network has learnt to categorize the saliency from
the visual and the tactile inputs and to distinguish the events
between grasping and not-grasping. It has therefore detected
the proprioceptive-visual contingency of self-produced actions.
A result that concords with the analysis done in the previous
paragraph [cf. Fig. 6(a)–(c)] showing that the synaptic pairing is
conducted between neurons of the two maps with long-range
and inter-modal synaptic coupling. In this stage, the two maps
intensively exchange information. For instance, someneural spikes
in the visual map triggered by external stimuli produces the
indirect firing of neurons in the tactile map not necessarily
associated to an input stimuli.
In that respect, we can say that the system produces some

neural activity not associated to any stimulus. Some activity in
the maps is therefore virtual or simulated; e.g., see the erroneous
triggering of some neurons from the tactile map by some neurons
from the vision map before any contact for t < t1 in Fig. 7, it
does not correspond to any real haptic information but to fake
ones (virtual haptic perception). Hence, the network combines
stimuli-baseddynamicswith self-activated cross-modal dynamics.
In that sense, the system is not passively receiving information
from the environment but is active by going beyond the available
information. An important feature of the brain dynamics in
general and of the MNS in particular which is to simulate fictious
perceptions from partial stimuli (Barsalou, 2008; Kent & Lamberts,
2008; Ramachandran & Blakeslee, 1998).
Simulation and anticipation. We analyze now the neural activity

in the two maps for the narrower interval at the time-to-contact
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Fig. 8. Neural dynamics of the visuo-tactile maps during physical interactions. In
red (resp. in cyan) the synaptic activation from the neurons of the visionmap (resp.
the tactilemap). At time-to-contact (t = t1), the retina anticipates only the temporal
changes about the hand motion in the direction of the cup: the spatial information
about the cup is filtered. When grasping the object (t = t2), joint detection of hand
motion contingent to the cup motion and the haptic activity corresponding to a
coordination in the neural dynamics (synchronization among the maps). Temporal
rules about the sequential order of the event are then associated to a neural
representation into the network. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

t ∈ [t1; t2] in Fig. 8. Interestingly, two clear intervals separate the
neural activity before and after contact (as previously observed)
where the first interval is bounded between t1 to the time-to-
contact and the second one from time-to-contact to t2. In the first
interval, one can observe that the specific neural pattern in the
visual map, associated to the hand-reaching-the-device (dashed
ellipse at t = t1), is triggering the neurons of the tactile map
before its effective activation from the tactile stimuli at t = 2.32 s.
(vertical bar). Hence, the vision map anticipates the next state of
the tactile map with tens of milliseconds in advance (70 ms). The
network is therefore not simply receiving the co-occurrent stimuli
but is also coordinating: the visual map predicts the expected
activity in the tactile map before its eventual realization; a similar
behavior with the one of spatial-visual proximity, observed and
stated by Berthoz (1997), which is a form of anticipated contact
with the area of the body that will be touched (Rizzolatti &
Sinigaglia, 2006). Then, if the prospected event is effectively
realized –whichmeans thatwe grasp the device –wewill have the
tactile neurons conform to the expectation. The result is the visuo-
tactile pattern-to-pattern linkage and rewarding through STDP by
the increasing of their synaptic weights.
The second interval starts from the time-to-contact (repre-

sented by the vertical bar) and ends at t2 (dashed ellipse) when we
effectively grasp the object. In this stage, the tactile stimuli by the
fingers’ pressure on the device trigger the correspondent neurons
of the tactile map. This particular tactile pattern is associated to a
Fig. 9. Causal chain extracted from the visuo-tactile maps. The chains are
assembled from the neurons of the two maps. Representation is global and
corresponds to the functional integration of all the modalities.

large neural band over the whole network at t = t2. Again, acti-
vation is cross-modal between the two maps but this time in the
opposite direction starting from the tactile map. Hence, the net-
work can be assimilated to a time-based associative memory, bidi-
rectional, linking the contingent neural activity between the two
maps into one event in the neural space.
We can view therefore the network as a corpus of coincident

detectors – in the place of neural scripts – always re-enacting and
simulating the expected contingent stimulus from the environ-
ment. In an information theoretical viewpoint, these features are
particularly important for the computational capabilities of this
class of network. From a developmental viewpoint, they might
underly the ground for contingency detection between different
modalities which is argued to pave theway to self-awareness, self-
perception and social cognition (Hiraki, 2006; Nadel et al., 2005;
Prince & Hollich, 2005; Rochat & Striano, 2000; Watson, 1994).
Retrieval as re-activation. We exposed in the previous section

how the two maps exchange information with precise temporal
relations, however we might wonder if they form coordinated and
coherent activity (i.e., long-range functional integration) during
the grasping and handling periods. To answer this question, we
propose to analyze the neural dynamics corresponding to these
periods during contact for t > t2. We plot them for the interval
t ∈ [3.2; 3.5] in Fig. 9 with the same color code used in Figs. 7 and
8 for the synaptic links.
During handling, the visual map and the tactile map are

interacting with each other dynamically and coherently: the
parallel processes done between the two maps, which means the
inter-modal neural pairing, are also assembled into consistent
long-range clusters dynamically constructed, concordant with
the perceptual stimuli. The processes produce the particular
perception–actionmatching corresponding to handling-an-object:
they get intertwined to each other so that they form effective
causal chains and contingency detectors between stimuli from
the same modality or to different ones (see the plain and dashed
lines in Fig. 9). These links make the two maps to ‘‘mirror’’ their
activities: enaction re-activates the familiar tactile patterns which,
at their turn, fire back to the visual map. Reversely, neurons from
the visual map trigger some tactile neurons which activate others
in one or the other map. Thus, perceptual experience in the neural
system is not just a simple recall of previously encoded patterns
but a constructive process that combines actively information
retrieved from the two maps and information received from
external dynamics. The neural system re-activates and anticipates
neural pairing from differentmodalities and it is their combination
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Fig. 10. Cluster statistics. (a) Density distribution of the neuron connectivity (b),
ordered by the length of the clusters (c) and by their time span (d) [resp. the
longest path of cluster defined and their time span in (a)]. The density of the
neuron connectivity follows the characteristic power-law curve typical of small-
world networks. The network produces scale-free dynamics. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

that produces the current action representation state inside the
network.
Cluster statistics. We study in this section the network statistics.

To this aim, we extract from its connectivity matrix the clusters
consistent with Izhikevich’s definition of polychronized groups:
time-locked but not synchronous firing patterns with millisecond
order (Izhikevich, 2006). Fig. 10 summarizes the cluster analysis
done where one cluster is defined as the neurons grouping with a
time span and a path lengthmeasured from its longest neural path.
It corresponds for the cluster in Fig. 10(a) to the neural path colored
in red. Fig. 10(b) plots the density distribution of the neuron
connectivity inside the network which means the proportion of
neurons connected to 1, 2, . . . ,N neurons whereas Fig. 10(c)
displays the cluster group length distribution and Fig. 10(d) shows
the relation between the cluster group length and their time
length. Taken together, these measures describe the network
functional properties.
For instance, a significant feature is the power-law curves

displayed in (b) and (c) – resp. the cluster group length and
the neuron connectivity – which reveals the scale-free nature
of the dynamics inside the network and informs about its
small-world organization. The power laws mean that events
in the network are not independent from each other, and
a few large events or ‘‘hub connectors’’ (i.e., the tail of the
power-law curve) dictate the activity (Buzsaki, 2006). In our
experiment, it means that the network produces different
description levels of the action across multiple time scales
– spanned over 10 to 250 ms, Fig. 10(d) – and assembled
dynamically into short- and long-range clusters. Furthermore,
their occurrence is not equiprobable; local synchrony (small
clusters) more easily arise than global synchrony (long-range
clusters) which is more rare thus critical. Complex networks that
develop small-world connections are found to generate efficient
interregional communication, enhanced signal propagation speed,
computational power, and synchronizability (Watts & Strogatz,
1998). It is noteworthy that the MNS has been also found to
be organized hierarchically (Lestou et al., 2008) and that F5
mirror neurons have been also subdivided into an asymmetric
distribution between ‘‘strictly congruent’’ neurons, representing
Fig. 11. Critical neurons.We circled in red the neuronswithmore than ten synaptic
connections during the period of tearing [taken from Fig. 10(b)]. They are critical
for the functional integrity of the network on which the clusters rely on. We plot
also some clusters passing by some of these neurons. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article.)

one third of the population, and ‘‘broadly congruent’’ neurons,
representing the two thirds (Gallese et al., 1996).
Similarly, certain neurons are found critical within the network

due to their small number in respect to their large number of con-
nections. For instance, less than 5 percent of the neurons pos-
sess only more than ten synaptic connections which corresponds
roughly to 300 neurons; one third possess more than 5 connec-
tions. They represent the ‘‘strictly congruent’’ mirror neurons of
the network. We circled them in red in Fig. 11 and drew in black
some clusters linking them. As one can see, these neurons follow
the trends of the visuo-tactile patterns. They represent therefore
the primitives that direct the network’s neural activity.

3.3. Understanding actions of others

Reentry, the inter-modal binding of the neural dynamics, let us
envision that the neural system can, from experiencing onemodal-
ity, reconstruct some others unaccessible. For instance, when ob-
serving some actions performed by others; the vision information
is enough to sense and simulate the missing proprioceptive infor-
mation. Reciprocally, themanipulation of one object in hidden con-
ditions (e.g., when we close the eyes) permits us to reconstruct
its visual primitives (we mentally simulate the missing visual
information).
This ability to perceive the action as a whole even from partial

information is an important feature of the MNS, it relates to
actionunderstanding and to the so-called correspondenceproblem
formulated by Brass and Heyes (2005):
‘‘When observing another person moving, we do not see the mus-

cles underlying their movement but rather the external consequence
of that action. So how does the observer’s motor system knows which
muscle activationwill lead to the observedmovement?Which relation
brings out the correspondence problem between movement observa-
tion and motor representation?’’
In our experiments, we argue that STDP links the contingent

tactile and visual patterns into a unified representation of the
action. To demonstrate our hypothesis, we propose to reproduce
Rizzolatti’s experiment exhibiting the MNS property to trigger
with precise timing to observed actions (Rizzolatti et al., 1996).We
consider to this end to reconduct the grasping experience in the
same experimental conditions as previously done (i.e., the same
device to be grasped, the same position on the visual field with the
same camera angle as in Fig. 4 with an overall similar execution
speed), but this time without providing any tactile information to
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Fig. 12. Spiking rate and activity of the neural maps in response to action of
grasping observed (no tactile information provided) – resp. top and bottom. The
neuron-to-neuron synaptic links in red (resp. cyan) correspond to neural activation
having for pre-synaptic neurons those belonging to the vision map (resp. tactile
map). The black line delineates the time-to-contact. Before contact, the neural
activity presents similar activity than during enaction; see Fig. 7. At the time-to-
contact and during handling, the visual map activates the dynamics of the tactile
map even without any input stimulus. The network simulates and reconstructs
the missing modality with precise timing. Such virtual perception in the network
reproduces one of the qualitative property of the mirror neuron system. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

the network.We display in Fig. 12with the same color code as used
in the previous sections the neural map activity in response to the
observed action of grasping, the time-to-contact is at t = 2.5 s
(plain line).
Before the time-to-contact, during the observation of the hand-

reaching-the-object, the neural dynamics exhibit similar patterns
as during enaction (see Fig. 7). One might consider that the
situation will differ from true enaction at the time-to-contact and
during grasping since the network will not receive any tactile
information. However, the neural maps do reproduce similar
dynamics after t > 2.8 s despite the missing modality (to
compare with Fig. 7). The visual patterns corresponding to the-
hand-grasping-the-object-and-handling-it, activate (in red) the
neurons belonging to the tactile map which, as for the case
of true enaction, fire back (in cyan) the vision neurons, as if
the tactile information were effectively provided. The haptic
perception is therefore fictious: because of the massively parallel
and bidirectional connections between the two maps, the two
modalities are intertwined and accessible to each other. Thanks
to reentry, signals that come to one spot from a map return then
back to its ownmap (Edelman, 1987; Edelman & Tononi, 2000). As
a result, the network reproduces similar qualitative features of the
mirror neuron system.
We plot in Fig. 13(a)–(b) the details of the neural dynamics

for the respective period of time-to-contact, t = 2.5 s, and
during handling, t > 2.8 s. At the time-to-contact in Fig. 13(a),
even without experiencing any tactile feedback, the network
is nevertheless capable to anticipate the precise timing of the
missing modality and to reconstruct its dynamics. The simulated
modality comes from the contingent cross-modal circuits that
were activated during the learning stage and that are reactivated
during the retrieval stage. But in contrast to the former situation,
the grasping event does not yield to any tactile stimuli. It follows
that the inter-modal binding associated to the tactile activation in
Fig. 8 is now missing. Despite this disrupting in the information
exchange, the perceptual modality is shortly reconstructed during
the handling in Fig. 13(b). The recall, based on massive parallel
small scripts, is therefore robust. Links from the tactile map to
the visual map in cyan show that perception is an active process
inside the system whether physical (stimuli-based) or simulated
Fig. 13. Reconstruction of the tactile modality from the observed action of grasping at the time-to-contact (a) and during handling (b) details of Fig. 12 with the same color
code. The network anticipates the tactile stimulation at the precise time to contact in (a) however, the expectation is not fulfilled which differs from the case of effective
enaction when expectation of the tactile stimulation is rewarded (see Fig. 8). Soon after during the handling of the device for t > 2.8 in (a) and (b), the visual patterns permit
to simulate and to reconstruct the missing tactile perception. Links from the tactile to the visual map in cyan show that perception is an active process inside the system
whether physical (stimuli-based) or virtual (not stimuli-based) emerging from the mirroring between the two maps.
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(not stimuli-based) emerging from the mirroring between the two
maps and using the same neural pathways.

4. Discussion

Wepresent a biologically plausiblemechanism to the represen-
tation of one action in a multi-modal neural network based on the
learning mechanism of STDP. Temporal structure of complex ac-
tions (e.g., grasping) are decomposedwithmillisecond order preci-
sion into ordered sequence of neural rules. The assembling of these
very many small scripts from contingent visuo-tactile inputs pro-
duce at the body level coherent clusters of hundreds of millisec-
onds order range expanded in thewhole network. Thesemassively
parallel connections are reentrant and bidirectional between the
two maps. They sustain the information exchange between them
and their functional integration. The result is that new cognitive
skills emerge at the body scale such asmulti-modal integration, an-
ticipation, and simulation of one missing modality (i.e., perceiving
virtually its stimulation not from a physical stimulus). The qualita-
tive features of the mirror neuron system.
Neurons that fire contingently, wire together. In a develop-

mental stage, the co-occurring information received from vision
and tactile input during the grasping sequence permit to shape
the neural system structural organization. Enaction produces the
epigenetic control of the network anatomy into an efficient orga-
nization. To this end, we emphasize the role of the body to struc-
ture the neural dynamics and the coordination among the maps.
Emergent properties such as reentry, scale-free dynamics and
computational capabilities appear thanks to the neural network
embodiment. Selection from situated action is decided through
reentry relying on the pairing of critical neurons or ‘‘hub connec-
tors’’ which are relatively few inside the network but possess a
high number of connections. They represent the ‘‘strictly congru-
ent’’ mirror neurons in the F5 areawhereas the peripheral neurons
represent the ‘‘broadly congruent’’ ones (Gallese et al., 1996).
As a result, the neural system acquires the appropriate percep-

tion–action associations reproducing some of the qualitative prop-
erties of the MNS: ‘‘reverberation’’ between modalities, firing to
executed and to observed actions with precise timing. We spec-
ulate that themirror neuron system is modeled with precise inter-
modal couplingmediated by the regulatorymechanism of STDP for
action representation, anticipation and action understanding. Our
hypothesis is plausible since STDP governs the neural dynamics in
various brain areas including the neo-cortex and the F5 area but re-
stricted since it does not explain how abstract action goals might
be interpreted. Lestou et al. (2008) and Rizzolatti and Craighero
(2004) distinguish nevertheless these two separated functions in
some recent studies.
The findings of Lestou et al. (2008) suggest that processing in

the ventral premotor cortex (PMv) may mediate the exact copying
of complex movements (e.g., precise grasps, finger prehension
and whole hand prehension), whereas processing in the parietal
and superior temporal areas may support the interpretation
of abstract action goals (e.g., reach, take, hold, and tear). Our
model might provide to this end a plausible mechanism of the
PMv area based on dynamical system viewpoints (Edelman &
Tononi, 2000; Izhikevich, 2006; Kuniyoshi et al., 2003; Tani, Ito,
& Sugita, 2004; Tsuda et al., 2004) with respect to computational
approaches (Kawato, 1999;Miall, 2003; Oztop et al., 2006;Wolpert
et al., 2003).
To conclude, in a developmental viewpoint, the spike-timing-

dependent plasticity might provide the sufficient neural basis for
babies to sense contingency, what Watson (1994) hypothesized to
be the premises for body representation, self-perception and the
discrimination between self and others which are the conditions
for developing social capabilities (Hiraki, 2006; Nadel et al.,
2005; Rochat, 1998, 2003). In this line, we hypothetize that
the present neural architecture might support some principles
for cognitive development and social competences necessary for
communication by means of gesture and language (Falck-Ytter
et al., 2006).
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Appendix

A.1. Haptic sensor

Our original tactile sensor consists of a pressure sensitive
conductive rubber sheet (sensor sheet), with 16 electrodes placed
only on its boundary. Electrical current is injected into the
sensor sheet in 16 different patterns using 16 different pairs of
neighboring electrodes. Each pattern of current injection produces
a unique potential distribution based on the internal resistance of
the sensor sheet. These potential distributions are sampled on the
boundary of the sensor sheet using the rest of the electrodes, to
produce a total of 208 potential measurements for all the current
injection patterns i.e. a data frame.
The sampled data frame is used to estimate the sensor’s

internal resistance distribution based on an inverse analysis
method called Electrical Impedance Tomography (EIT). Based on
this concept, any change in the resistance distribution of the
material through pressure, stretch or other tactile stimuli can
be detected throughout the sensor sheet. Since there are no
wirings in the internal part, a thin, deformable and deformation
sensitive tactile distribution sensor is formed [cf. (Alirezaei,
Nagakubo, & Kuniyoshi, 2007a, 2007b)]. Applications of the tactile
distribution sensor include easy implementation over complex
3D surfaces, implementation over stretching areas such as robot
joints, and detection of sophisticated tactile stimuli involving skin
deformation.
The sensor has a reasonable sensitivity threshold and can detect

forces bigger than 1 N. Also, it can detect tactile stimuli which
stimulate more than 1% of the sensor area which is an acceptable
resolution for our experiment. An FEMmodel with 2261 elements,
each having an associated resistance value, is used to estimate
and visualize the resistance distribution of the sensor [Fig. 4].
The estimated resistance values of the 2261 elements are used as
the tactile input and directly fed into the neural network. These
resistance estimations are produced at a rate of around 20 frames
per second. We then down-sampled the resolution by two to one
thousand elements to be sent to the units of the tactile map.
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