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Abstract Most Structure from Motion pipelines are based
on the iterative refinement of an initial batch of feature cor-
respondences. Typically this is performed by selecting a set
of match candidates based on their photometric similarity;
an initial estimate of camera intrinsic and extrinsic parame-
ters is then computed by minimizing the reprojection error.
Finally, outliers in the initial correspondences are filtered by
enforcing some global geometric property such as the epipo-
lar constraint. In the literature many different approaches
have been proposed to deal with each of these three steps,
but almost invariably they separate the first inlier selection
step, which is based only on local image properties, from
the enforcement of global geometric consistency. Unfortu-
nately, these two steps are not independent since outliers can
lead to inaccurate parameter estimation or even prevent con-
vergence, leading to the well known sensitivity of all filter-
ing approaches to the number of outliers, especially in the
presence of structured noise, which can arise, for example,
when the images present several repeated patterns. In this
paper we introduce a novel stereo correspondence selection
scheme that casts the problem into a Game-Theoretic frame-
work in order to guide the inlier selection towards a con-
sistent subset of correspondences. This is done by enforc-
ing geometric constraints that do not depend on full knowl-
edge of the motion parameters but rather on some semi-local
property that can be estimated from the local appearance of
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the image features. The practical effectiveness of the pro-
posed approach is confirmed by an extensive set of experi-
ments and comparisons with state-of-the-art techniques.
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1 Introduction

The common goal of all Structure from Motion (SfM) tech-
niques is to infer as many 3D clues as possible by analyzing
a set of 2D images. In general the 3D knowledge that can
be obtained by such methods can be classified into two dif-
ferent (but related) classes: scene and camera information.
Scene information is referred to the actual shape of the ob-
jects depicted in the images. This often boils down to assign-
ing a plausible location in space to some significant subset
of the acquired 2D points. These newly reconstructed 3D
points are the “structure” part of SfM. By contrast, camera
information includes all the parameters that characterize the
abstract model of the image acquisition process. These can
in turn be classified into intrinsic and extrinsic parameters.
Intrinsic parameters are related to the physical characteris-
tics of the camera itself, such as its focal length and princi-
pal point, while the extrinsic parameters define the camera
pose, that is its position and rotation with respect to a con-
ventional origin in the 3D space. Unlike the structure part,
which is physically bound to a particular 3D configuration,
the intrinsic and extrinsic parameters can vary in each shot;
for this reason they are usually referred to as “motion”.

Given the wide range of practical applications that could
take advantage of a 3D reconstruction, it is not surprising
that SfM has been a very active research topic during the
last decades. In fact, many different approaches have been
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Fig. 1 A simplified schema that captures the general steps found in
many SfM approaches. The main loop is usually based on an iterative
refinement of the candidate scene points based of their geometric con-

sistency with respect to the estimated motion. Circles between steps
represent the applied outlier filtering strategies

proposed in literature: some are aimed at solving the most
general scenarios, others specialize to sub-domains, both
in terms of the number of free parameters allowed and in
terms of the assumptions made on some characteristics of
the scene to be inferred. While the most relevant SfM ap-
proaches will be discussed with more detail in Sect. 2.3, in
this section we will resort to the simplified general workflow
presented in Fig. 1 in order to introduce the key ideas and
contributions of the proposed approach. To this end, the typ-
ical pipeline can be roughly split in two subsequent macro
steps (respectively dubbed as Image based and Structure and
Motion based in Fig. 1). The first step deals with the local-
ization in the source 2D images of salient feature points that
are both distinctive and repeatable. Such points are meant to
be tracked between different images, thus creating multiple
sets of correspondences that will be used in the scene recon-
struction step. The use of a reduced set of relevant points
is crucial as their repeatable characterization allows us to
minimize the chance of including wrong correspondences.
Typically, filters are applied to the selection and matching
phase in an attempt to make this phase more robust. In Fig. 1
the extracted features are further culled by using filter f1,
which eliminates points that exhibit very common descrip-
tors or that are not distinctive or stable enough. A second
refinement can be achieved after the matching: most imple-
mentations of filter f2 remove correspondences that are not
reliable enough, that is pairs where the second best match
has a very similar score to the first one or that involve too
different descriptors. Once a suitable set of point pairs has
been found among all the images, the second macro step of
the pipeline uses them to perform the actual structure and
motion estimation. This happens by building a reasonable
guess for both the camera parameters and the spatial loca-
tions of the correspondences found, and then, almost invari-
ably, by applying a bundle adjustment optimization to refine
them. Also, at this stage, filtering techniques can be adopted
in order to remove outliers from the initial set of matches.
Specifically, a filter that removes pairs that do not agree with
the estimated epipolar constraints can be applied after com-
bining some or all the images into the initial guesses (f3),
or after bundle adjustment optimized the structure and mo-
tion estimates (f4). Depending on the result of the filtering
a new initial estimation can be triggered, taking advantage

of the (hopefully) more accurate selection of corresponding
features. This kind of process leads to an iterative refine-
ment that usually stops when the inlier set does not change
or becomes stable enough. While this approach works well
in many scenarios, it inherently contains a limitation that
might drive it to poor results or even prevent it from converg-
ing at all: The main criterion for the elimination of erroneous
matches is to exclude points that exhibit a large reprojection
error or adhere poorly to the epipolar constraint after a first
round of scene and pose estimation. Unfortunately this af-
terthought is based upon an error evaluation that depends on
the initial matches; this leads to a quandary that can only
be solved by avoiding wrong matches from the start. This is
indeed a difficult goal, mainly because the macro step from
which the initial matches are generated is only able to ex-
ploit strictly local information, such as the appearance of
a point or of its immediate surroundings. By contrast the
following step would be able to take advantage of global
knowledge, but this cannot be trusted enough to perform an
extremely selective trimming and thus most methods settle
with rather loose thresholds. In order to alleviate this lim-
itation, in this paper we introduce a robust matching tech-
nique that allows to operate a very accurate inlier selection
at an early stage of the process and without any need to
rely on preliminary structure and motion estimations. This
is obtained by enforcing properties that are inferable from
image regions at a local or semi-local scale and then by ex-
tending their validation to a global scale. Similar approaches
have already been used to obtain better camera pose estima-
tions when dealing with complex multi-component scenes,
where local observations can be handled in a decoupled way,
thus leading to a better resilience to outliers (Fermuller et al.
1999). In this paper the inlier validation happens by casting
the selection process into a Game-Theoretic setting, where
feature-correspondences are allowed to compete with one
another, receiving support from correspondences that satisfy
the same semi-local constraints, and competitive pressure
from the rest. The surviving correspondences form a small
cohesive set of mutually compatible correspondences, sat-
isfying the semi-local constraint globally. Of course many
alternative selection techniques exist and can be adopted
to perform the inlier set optimization, nevertheless the pro-
posed Game-Theoretic approach offers the unique advan-
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tage of a strong tendency to limit false negatives rather than
concentrating on low false positives as most matching tech-
niques in the literature. This property allows for a strong
resilience to the large number of outliers normally encoun-
tered in general SfM scenarios. Further, the approach is
quit3e general; in fact, in Sect. 3 we will show how the
definition of different payoff functions between strategies
leads to optimizers with task-specific goals. Finally, in or-
der to assess the advantage provided by our approach, in the
experimental section we compare our technique with a ref-
erence implementation of the structure-from-motion system
presented in Snavely et al. (2006, 2008).

2 Background

Before discussing our robust matching approach we will
briefly review the most significant related contributions
available in literature and introduce some basic notions
about the geometry of the SfM process.

2.1 Features Extraction and Matching

The selection of 2D point correspondences is arguably the
most critical step in image based multi-view reconstruction
and, differently from techniques augmented by structured
light or known markers, there is no guarantee that pixel
patches exhibiting strong photo consistency are actually lo-
cated on the projection of the same physical point. Further,
even when correspondences are correctly assigned, the in-
terest point detectors themselves introduce displacement er-
rors that can be as large as several pixels. Such errors can
easily lead to sub-optimal parameter estimation or, in the
worst cases, to the inability of the optimization algorithm
to obtain a feasible solution. For this reasons, reconstruc-
tion approaches adopt several specially crafted expedients
to avoid the inclusion of outliers as much as possible. In
the first place correspondences are not searched throughout
the whole image plane, but only points that are both repeat-
able and well characterized are considered. This selection is
carried out by means of interest point detectors and feature
descriptors. Salient points are localized with sub-pixel ac-
curacy by general detectors, such as Harris Operator (Harris
and Stephens 1988) and Difference of Gaussians (Marr and
Hildreth 1980), or by using techniques that are able to lo-
cate affine invariant regions, such as Maximally Stable Ex-
tremal Regions (MSER) (Matas et al. 2004) and Hessian-
Affine (Mikolajczyk and Schmid 2002). The affine invari-
ance property is desirable since the change in appearance
of a scene region after a small camera motion can be lo-
cally approximated with an affine transformation. Once in-
teresting points are found, they must be matched to form
the candidate pairs to be fed to the subsequent parameter

optimization steps. Most of the currently used techniques
for point matching are based on the computation of some
affine invariant feature descriptor. Specifically, to each point
is assigned a feature vector with tens to hundreds of dimen-
sions, plus a scale and a rotation value. Among the most
used feature descriptor algorithms are the Scale-Invariant
Feature Transform (SIFT) (Lowe 1999, 2003), Speeded Up
Robust Features (SURF) (Herbert and Gool 2006), Gradi-
ent Location and Orientation Histogram (GLOH) (Mikola-
jczyk and Schmid 2005) and more recently the Local En-
ergy based Shape Histogram (LESH) (Sarfraz and Hellwich
2008), the SIFT algorithm being the first of the lot and ar-
guably the most widely adopted. The complete SIFT tech-
nique, introduced and patented by Lowe, describes in de-
tail both the detection step and the computation of repeat-
able descriptors to be associated with the found keypoints.
Specifically, the localization of potentially relevant features
happens by first applying to the image a Gaussian filter at
different scales and then by selecting points that are max-
ima or minima of the Difference of Gaussians (DoG) that
occur at multiple scales. This is done by comparing each
pixel in the DoG images to its eight neighbors at the same
scale and nine corresponding neighboring pixels in each of
the neighboring scales. Subsequently the found candidates
are interpolated to nearby data in order to ensure an accu-
rate and repeatable position and thus they are filtered by
discarding points that exhibit a low contrast or that are lo-
cated along an edge (which could hinder the precision of
the localization). Finally, an orientation based on the lo-
cal image gradient is assigned to each one of the surviv-
ing points. The computation of the descriptor vector is then
performed on the image closest in scale to the keypoint’s
scale and rotates accordingly to the keypoint’s orientation.
To this end, a set of histograms are computed based on the
magnitude and orientation values picked from the neighbor-
hood of the feature. The magnitudes are further weighted
by a Gaussian function with σ equal to half the width of
the descriptor window. The histograms are then packed in a
vector which is typically long 128 or 256 elements and that
is normalized to unit length in order to enhance invariance
to changes in illumination. Given the great success of the
SIFT detector/descriptor, several enhancements and special-
izations were introduced since the original paper by Lowe;
for instance, PCA-SIFT (Ke and Sukthankar 2004) applies
PCA to the normalized gradient patch to gain more distinc-
tiveness, PHOW (Bosch et al. 2007) makes the descriptor
denser and allows to use color information, ASIFT (Morel
and Yu 2009) extends the method to cover the tilt of the
camera in addition to scale, skew and rotation. In all these
techniques, the descriptor vector is robust with respect to
affine transformations: i.e., similar image regions exhibit de-
scriptor vectors with small mutual Euclidean distance. This
property is used to match each point with the candidate with
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Fig. 2 Example of SIFT features extracted and matched using the
VLFeat package. Each feature in the first image has been matched
with the feature in the second image that exhibits the most similar

descriptor. Note that, while most of the correspondences are correct,
many mismatches are still present

the nearest descriptor vector. However, if the descriptor is
not distinctive enough this approach is prone to select many
outliers. A common optimization involves the definition of
a maximum threshold over the distance ratio between the
first and the second nearest neighbors. In addition, points
that are matched multiple times are deemed as ambiguous
and discarded (i.e., one-to-one matching is enforced). De-
spite any effort made in this direction, any filter that oper-
ates at a local level is fated to fail when the matched regions
are very similar or identical, a situation that is not uncom-
mon as it happens every time an object is repeated multiple
times in the scene or there is a repeated texture. In Fig. 2 we
show two examples of SIFT features extracted and matched
by using the VLFeat (Vedaldi and Fulkerson 2008) Matlab
toolkit. In the first example almost all the correspondences
are correct, still some clear mismatches are visible both be-
tween the plates of the saurus (which are similar in shape)
and on the black background (which indeed contains some
amount of noise). In the second example several identical
screws are matched and, as expected, features coming from
different objects are confused and almost all the correspon-
dences are wrong. It should be noted that such mismatches
are not a fault of the descriptor itself as it performs exactly
its duty by assigning similar description vectors to features
that are almost identical from a photometric standpoint. In
fact, this particular example is specially crafted to break tra-
ditional matchers that rely on local properties. In the exper-
imental section, we will show how introducing some level
of global awareness in the process allows to deal well also
with these cases that are indeed very common in the highly
repetitive world of human-made objects and urban environ-
ments.

2.2 Camera Model and Epipolar Geometry

The pinhole projection (Fig. 3) is the most common camera
model used in reconstruction frameworks. Its wide adop-
tion is due to its ability to approximate well the behaviour
of many real cameras. In practical scenarios radial and tan-
gential lens distortions are the main sources of divergence

from the pinole model, however it is easy to fit polynomial
models to them and compensate for their effect (Tsai 1987;
Weng et al. 1992). The most important parameters of this
model are the pose of the camera with respect to the world
(represented by a rotation matrix R and a translation vec-
tor T ), the distance of the projection center from the im-
age plane (the focal length f in Fig. 3), and the coordinates
on the image plane of the intersection between the optical
axis and the plane itself (the principal point c = (cx, cy)

T in
Fig. 3). The projection of a world point m on the image plane
happens in two steps. The first step is a rigid body trans-
formation from the world coordinate system to the camera
system. This can be easily expressed (using homogeneous
coordinates) as:

⎡
⎢⎢⎣
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⎤
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The second step is the projection of the point in camera co-
ordinates on the image planes, which happens by applying a
camera calibration matrix K containing the intrinsic param-
eters of the model. The most general version of the calibra-
tion matrix allows for a different vertical (fy ) and horizontal
(fx ) focal length to accommodate for non-square pixels, and
for a skewness factor (s) to account for non-rectangular pix-
els:

K =
⎡
⎣

fx s cx

0 fy cy

0 0 1

⎤
⎦ .

In practice, for most real cameras, pixels can be approxi-
mated by perfect squares, thus we can resort to the basic
model of Fig. 3 and assume s = 0 and fx = fy = f . Usually
the camera pose and calibration matrices are combined into
a single 3×4 projection matrix P = K[R T]. This projection
matrix can be directly applied to a point in (homogeneous)
world coordinates to obtain its corresponding 2D point on
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Fig. 3 Illustration scheme of
the pinhole camera model (a)
and of the epipolar geometry
(b). See text for details

the image plane:

m′ = Pm = K[R T]m.

When a point is observed by two cameras its projections
on the respective image planes are not independent. In fact,
given the projection m1 of point m in the first camera, its
projection m2 on the second image plane must lie on the
projection l2 of the line that connects m1 to m (see Fig. 3).
This line is called the epipolar line and can be found for each
point m1 in the first image plane by intersecting the plane de-
fined by o1, o2 and m1 (the epipolar plane) with the second
image plane. The epipolar constraint can be enforced exactly
only if the position of m1 and m2 and the camera parame-
ters are known without error. In practice, however, there will
always be some distance between a projected point and the
epipolar line it should belong to. This discrepancy is a useful
measure for verification tasks such as the detection of out-
liers among alleged matching image points, or the evaluation
of the quality of estimated camera parameters. The epipo-
lar constraint can be expressed algebraically in a straightfor-
ward manner. If we know the rotation matrix and translation
vector that move one camera reference system to the other
we have that:

xT
1 Ex2 = xT

1

⎡
⎣

0 −tz ty
tz 0 −tx

−ty tx 0

⎤
⎦Rx2 = 0,

where the essential matrix E is the product between the
cross product matrix of the translation vector T and the rota-
tion matrix R, and x1 and x2 are points expressed in the ref-
erence systems of the first and second camera respectively,
belonging to the same epipolar plane. If the calibration ma-
trices of both cameras are known, this constraint can also be
expressed in terms of image points by applying the inverse
of the two calibration matrices to the image points:

(K−1
1 m1)

T E(K−1
2 mT

2 ) = mT
1 (K−1T

1 EK−1
2 )m2 = 0,

where F = K−1T
1 EK−1

2 is called the fundamental matrix. It
is clear that if intrinsic camera parameters are known the

epipolar constraint can be verified on image points by using
just the essential matrix, which has only five degrees of free-
dom; otherwise it is necessary to resort to the use of the fun-
damental matrix, which has seven degrees of freedom. Many
algorithms are known to estimate both E or F from im-
age point correspondences (Hartley 1995; Zhang et al. 1995;
Torr and Zisserman 1998).

2.3 Structure from Motion

Structure from Motion (SfM) has been a core Computer
Vision topic for a long time and a large number of differ-
ent problem formulations and algorithms have been intro-
duced over the last few decades (Aggarwal and Duda 1975;
Weng et al. 1993; Zhang 1995). The distinctive traits of
many SfM techniques recently proposed in literature are
usually to be found in the approach used for the initial es-
timate and in the refinement technique adopted. In general
this refinement happens by iteratively applying a bundle ad-
justment algorithm (Triggs et al. 2000) to an initial set of
correspondences, 3D points and motion hypotheses. This
optimization is almost invariably carried out by means of the
Levenberg-Marquardt algorithm (Levenberg 1944), which is
very sensitive to the presence of outliers in the input data.
For this reason any possible care should be taken in order
to supply the optimizer with good hypotheses or at least a
minimal number of outliers. When a reasonable subset of
all the points is visible in all the images global methods
can be used to obtain such initial hypothesis. This approach,
commonly called factorization, was initially proposed only
for simplified camera models that are not able to fully
capture the pinhole projection (Tomasi and Kanade 1992;
Weinshall and Tomasi 1995). More recently, similar ap-
proaches have been presented also for perspective cam-
eras (Sturm and Triggs 1996; Heyden et al. 1999), how-
ever their need for having each point visible in each cam-
era severely reduces their usability in practical scenarios
where occlusion is usually abundant. For this reason incre-
mental methods, which allow to add one or a few images at
a time, are by far more popular in SfM applications. Usu-
ally such methods start from a reliable image pair (for in-
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stance the pair with the higher number of good correspon-
dences), then an initial reconstruction is obtained by triangu-
lation and finally extended sequentially. The extension can
happen by virtue of common 2D points between a new cam-
era and one or more images already in the batch. If inter-
nal camera parameters are known (at least roughly) rota-
tion and translation direction can be extracted from the es-
sential matrix and translation magnitude can be found us-
ing the projection in the new image of an already recon-
structed 3D point. In the more general case intrinsic pa-
rameters are not known and the new camera can be added
by exploiting the correspondences between its 2D features
and previously triangulated 3D points to estimate the pro-
jection matrix (Beardsley et al. 1997; Pollefeys et al. 1999).
Finally, it is possible to merge partial reconstructions by
using corresponding 3D points (Fitzgibbon and Zisserman
1998). Many modern approaches iterate this process by in-
cluding and excluding point correspondences or entire im-
ages by validating them with respect to the currently esti-
mated structure and camera poses (Brown and Lowe 2005;
Vergauwen and Van Gool 2006; Snavely et al. 2008).

3 Non-cooperative Games for Inlier Selection

The selection of matching points based on the feature de-
scriptors is only able to exploit local information. This lim-
itation conflicts with the richness of information that is em-
bedded in the scene structure. For instance, under the as-
sumption of rigidity and small camera motion, intuition sug-
gests that features that are close in one view cannot be too
far apart in the other one. Further, if a pair of features exhibit
a certain difference of angles or ratio of scales, this relation
should be maintained among their respective matches. Our
basic idea is to formalize this intuitive notion of consistency
between pairs of feature matches into a real-valued compati-
bility function and to find a large set of matches that express
a high level of mutual compatibility. Of course, the ability
to define a meaningful pairwise compatibility function and
a reliable technique for finding a consistent set is at the ba-
sis of the effectiveness of the approach. Following (Torsello
et al. 2006; Albarelli et al. 2009), we model the matching
process in a Game-Theoretic framework, where two play-
ers select a pair of matching points from two images. Each
player then receives a payoff proportional to how compat-
ible his match is with respect to the other player’s choice.
Clearly, it is in each player’s interest to pick matches that are
compatible with those the other players are likely to choose.
In general, as the game is repeated, players will adapt their
behavior to prefer matchings that yield larger payoffs, driv-
ing all inconsistent hypotheses to extinction, and settling for
an equilibrium where the pool of matches from which the
players are still actively selecting their associations forms

a cohesive set with high mutual support. Within this for-
mulation, the solutions of the matching problem correspond
to evolutionary stable states (ESS’s), a robust population-
based generalization of the notion of a Nash equilibrium.
In a sense, this matching process can be seen as a contex-
tual voting system, where each time the game is repeated
the previous selections of the other players affect the future
vote of each player in an attempt to reach consensus. This
way the evolving context brings global information into the
selection process. Since the evolutionary process is driven
entirely by the payoff between strategies, it is clear that by
adopting an appropriate compatibility function it is possible
to suit the framework to achieve different goals. In this pa-
per we will introduce two payoff functions to address our
multi-view point matching problem. In Sect. 3.2 we will de-
fine a compatibility among pairs of correspondences that is
proportional to the similarity of the affine transformation in-
ferred from each match; this is done to exploit the expected
local spatial and scale coherence among image patches. In
Sect. 3.3 we will propose a refinement step that filters out
groups of matches by letting them play an evolutionary
game where the payoff is bound to their mutual ability to
comply with the epipolar constraint.

3.1 Game-Theoretic Selection

Originated in the early 40’s, Game Theory was an attempt
to formalize a system characterized by the actions of entities
with competing objectives, which is thus hard to character-
ize with a single objective function (Weibull 1995). Accord-
ing to this view, the emphasis shifts from the search of a lo-
cal optimum to the definition of equilibria between opposing
forces, providing an abstract theoretically-founded frame-
work to model complex interactions. In this setting multiple
players have at their disposal a set of strategies and their goal
is to maximize a payoff that depends also on the strategies
adopted by other players.

Here we will concentrate on symmetric two player
games, i.e., games between two players that have the same
set of available strategies and that receive the same pay-
off when playing against the same strategy. More formally,
let O = {1, . . . , n} be the set of available strategies (pure
strategies in the language of Game-Theory), and C = (cij )

be a matrix specifying the payoffs, then an individual play-
ing strategy i against someone playing strategy j will re-
ceive payoff cij . A mixed strategy is a randomization of
the available strategies, i.e., a probability distribution x =
(x1, . . . , xn)

T over the set O . Clearly, mixed strategies are
constrained to lie in the n-dimensional standard simplex

�n =
{

x ∈ R
n : xi ≥ 0 for all i ∈ 1, . . . , n,

n∑
i=1

xi = 1

}
.
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The support of a mixed strategy x ∈ �, denoted by σ(x), is
defined as the set of elements chosen with non-zero prob-
ability: σ(x) = {i ∈ O|xi > 0}. The expected payoff re-
ceived by a player choosing element i when playing against
a player adopting a mixed strategy x is (Cx)i = ∑

j cij xj ,
hence the expected payoff received by adopting the mixed
strategy y against x is yT Cx. The best replies against mixed
strategy x is the set of mixed strategies

β(x) =
{

y ∈ �|yT Cx = max
z

(zT Cx)
}
.

The best reply is not necessarily unique. Indeed, except in
the extreme case in which there is a unique best reply that is
a pure strategy, the number of best replies is always infinite.
A central notion of Game-Theory is that of a Nash equilib-
rium. A strategy x is said to be a Nash equilibrium if it is the
best reply to itself, i.e., ∀y ∈ �,xT Cx ≥ yT Cx. This implies
that ∀i ∈ σ(x) we have (Cx)i = xT Cx; that is, the payoff of
every strategy in the support of x is constant. The idea un-
derpinning the concept of Nash equilibrium is that a rational
player will consider a strategy viable only if no player has
an incentive to deviate from it.

We undertake an evolutionary approach to the computa-
tion of Nash equilibria. Evolutionary Game-Theory origi-
nated in the early 70’s as an attempt to apply the principles
and tools of Game-Theory to biological contexts. It consid-
ers an idealized scenario where pairs of individuals are re-
peatedly drawn at random from a large population to per-
form a two-player game. In contrast to traditional Game-
Theoretic models, players are not supposed to behave ra-
tionally, but rather act according to a pre-programmed be-
havior, or mixed strategy. Further, it is supposed that some
selection process operates over time on the distribution of
behaviors favoring players that receive higher payoffs.

In this dynamic setting, the concept of stability, or resis-
tance to invasion by new strategies, becomes central. A strat-
egy x is said to be an evolutionary stable strategy (ESS) if it
is a Nash equilibrium and

∀y ∈ � xT Cx = yT Cx =⇒ xT Cy > yT Cy. (1)

This condition guarantees that any deviation from the stable
strategies does not pay.

The search for a stable state is performed by simulating
the evolution of a natural selection process. Under very loose
conditions, any dynamics that respect the payoffs is guar-
anteed to converge to Nash equilibria (Weibull 1995) and
(hopefully) to ESS’s; for this reason, the choice of an actual
selection process is not crucial and can be driven mostly by
considerations of efficiency and simplicity. We chose to use
the replicator dynamics (Taylor and Jonker 1978), a well-
known formalization of the selection process governed by

the following equation

xi (t + 1) = xi (t)
(Cx(t))i

x(t)T Cx(t)
(2)

where xi is the i-th element of the population and C the
payoff matrix.

A point x is said to be a stationary (or equilibrium) point
of our dynamical system, if ẋi = 0, for all i = 1, . . . , n.
A stationary point x is said to be asymptotically stable if
any trajectory starting sufficiently close to x converges to x.

It can be shown (Weibull 1995) that a point x ∈ � is the
limit of a trajectory of the replicator dynamics starting from
the interior of � if and only if it is a Nash equilibrium. Fur-
ther, if point x ∈ � is an ESS, then it is asymptotically stable
for the replicator dynamics.

In our approach, we let matches compete with one an-
other, each obtaining support from compatible associations
and competitive pressure from all the others. The selec-
tion process is simulated by running the recurrence (2) and,
at equilibrium, only pairings that are mutually compatible
should survive and are then taken to be inliers.

3.2 Affine Preserving Matching Game

Central to this framework is the definition of a matching
game, or, specifically, the definition of the strategies avail-
able to the players and of the payoffs related to these strate-
gies. Given a set M (model) of feature points in a source im-
age and a set D (data) of features in a target image, we call a
matching strategy any pair (a1, a2) with a1 ∈ M and a2 ∈ D.
We call the set of all the matching strategies S ⊆ M × D.
The total number of matching strategies in S can, in theory,
be as large as the Cartesian product of the sets of features
detected in the images. Since most interest point detectors
extract thousands of features from an image, a suitable se-
lection should be made in order to keep its size limited. To
this end we can exploit unary information such as the dis-
tance between descriptors or the photo-consistency of local
image patches to select only feasible pairs. Specifically, for
each source feature we can generate k matching strategies
that connect it to the k nearest destination features in terms
of descriptor distance. Since our Game-Theoretic approach
operates inlier selection regardless of the descriptor, we do
not need to set any threshold with respect to the absolute
descriptor distance or the distinctiveness between the first
and the second nearest point. In this sense, the only con-
straint that we need to impose over k is that it should be
large enough that we can expect the correct correspondence
to be among the candidates for a significant proportion of
the source features. In our preliminary work (Albarelli et al.
2010) we already analyzed the influence of k over the qual-
ity of the matches obtained and we found that a very small
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Fig. 4 The payoff between two matching strategies is inversely pro-
portional to the maximum reprojection error obtained by applying the
affine transformation estimated by a match to the other

amount of candidates (typically 3 or 4) are enough to guar-
antee a satisfactory performance, however, in the presence
of highly repeating patterns, a larger value might be needed.
By reducing the number of correspondences per source fea-
ture to a constant value, we limit the growth of the number
of strategies to be linear with the number of (source) features
to be matched.

Once S has been selected, our goal becomes to extract
from it a large subset of correspondences that includes only
correctly matched features: that is, strategies that associate
a physical point in the source image with the same physical
point (if visible) in the destination image. To this end, it is
necessary to define a payoff function � : S × S → R

+ that
exploits some pairwise information available at this early
stage (i.e. before estimating camera and scene parameters)
and that can be used to impose consistency globally. Since
location, scale, and rotation are associated to each feature,
we can associate to each correspondence (a, b) between fea-
ture a in the source image and feature b in the target image
a similarity transform T (a, b) that maps the neighborhood
of a into the neighborhood of b, transforming the location,
orientation, and scale measured in the source image into the
location, orientation, and scale observed in the target image.
Under small motion assumptions, we can expect these sim-
ilarity transformations to be very similar locally. Thus, im-
posing the conservation of the similarity transform, we aim
to extract clusters of feature matches that belong to the same
region of the object and that tend to lie at the same level of
depth. While this could seem to be an unsound assumption
for general camera motion, in the experimental section we
will show that it holds well with the typical disparity found
in standard multiple view and stereo data sets. Further, it
should be noted that with large camera motion, most, if not
all, commonly used feature detectors fail, thus any inlier se-
lection attempt becomes meaningless.

In order to define the payoff function � we need a way
to measure the distance between similarity transforms. In or-
der to avoid the problem of mixing incommensurable quan-
tities, we compute the distance in terms of the reprojection

error expressed in pixels. Specifically, given two matching
strategies (a1, a2) and (b1, b2) and their respective associ-
ated similarities T (a1, a2) and T (b1, b2), we calculate vir-
tual points a′

2 and b′
2 by applying the other strategy transfor-

mation to the source features a1 and b1 (see Fig. 4). More
formally,

a′
2 = T (b1, b2)a1,

b′
2 = T (a1, a2)b1.

Given virtual points a′
2 and b′

2, we can measure the similarity
between (a1, a2) and (b1, b2) as:

sim((a1, a2), (b1, b2)) = e−λmax(|a2−a′
2|,|b2−b′

2|) (3)

where λ is a selectivity parameter: If λ is small, then the
similarity function (and thus the matching) is more tolerant
with respect to deviation in the similarity transformations,
becoming more selective as λ grows. Since each source fea-
ture can correspond with at most one destination point, it is
desirable to avoid any kind of multiple match. It is easy to
show that a pair of strategies with zero mutual payoff cannot
belong to the support of an ESS (see Albarelli et al. 2009),
thus any payoff function � can be easily adapted to enforce
one-to-one matching by defining:

�((a1, a2), (b1, b2)) =

⎧⎪⎨
⎪⎩

sim((a1, a2), (b1, b2)), a1 
= b1,

a2 
= b2,

0 else.

(4)

We define payoff (4) a similarity enforcing payoff function
and we call an affine matching game any symmetric two
player game that involves a matching strategies set S and
a similarity enforcing payoff function �.

The main idea of the proposed approach is that by play-
ing a matching game driven by a similarity enforcing pay-
off function such as (4), the strategies (i.e. correspondence
candidates) that share a similar locally affine transforma-
tion are advantaged from an evolutionary point of view and
shall emerge in the surviving population. In Fig. 5 we illus-
trate a simplified example of this process. Once the popula-
tion has reached a local maximum, all the non-extinct mat-
ing strategies can be considered valid, however, technically
strategies become truly extinct only after an infinite number
of iterations. Since we halt the evolution when the popula-
tion ceases to change significantly, it is necessary to intro-
duce some criteria to distinguish correct from non-correct
matches. To avoid a hard threshold we chose to keep as
valid all the played strategies whose population size exceeds
a percentage of the most popular strategy. We call this per-
centage quality threshold (q). This criterion further limits
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Fig. 5 An example of the affine-based evolutionary process. Four fea-
ture points are extracted from two images and a total of six match-
ing strategies are selected as initial hypotheses. The matrix � shows
the compatibilities between pairs of matching strategies according
to a one-to-one similarity-enforcing payoff function. Each matching
strategy got zero payoff with itself and with strategies that share
the same source or destination point (i.e., �((b1, b2), (c1, b2)) = 0).
Strategies that are coherent with respect to a similarity transforma-
tion exhibit high payoff values (i.e., �((a1, a2), (b1, b2)) = 1 and
π((a1, a2), (d1, d2)) = 0.9)), while less compatible pairs get lower

scores (i.e., π((a1, a2), (c1, c2)) = 0.1). Initially (at T = 0) the pop-
ulation is set to the barycenter of the simplex and slightly perturbed.
After just one iteration, (c1, b2) and (c1, c2) have lost a significant
amount of support, while (d1, c2) and (d1, d2) are still played by a siz-
able amount of population. After ten iterations (T = 10) (d1, d2) has
finally prevailed over (d1, c2) (note that the two are mutually exclu-
sive). Note that in the final population ((a1, a2), (b1, b2)) have a larger
support than (d1, d2) since they are a little more coherent with respect
to similarity

the number of selected strategies, but increases their consis-
tency, since the population proportion is linked to the coher-
ence of the strategy with the other surviving strategies. Each
evolution process selects only a single group of matching
strategies that are mutually coherent with respect to a lo-
cal similarity transformation. This means that if we want to
cover a large portion of the image we need to iterate the pro-
cess many times, pruning the previously selected matches
at each new iteration. Note that by imposing a minimal size
for a group to be deemed as valid, the odds of recognizing
structured outliers as false positives get lower. In fact, the
probability of a large group to be coherent with respect to
local affinity by chance is reduced as the minimal group size
increases. Of course the usual trade-off between the desired
precision and recall parameters must be taken into account
when setting this kind of threshold.

3.3 Refinement by Epipolar Constraint Enforcement

The game formulation we just introduced shifts the match-
ing problem to a more global scope by producing a set
of correspondences between groups of features. While the
affine camera model extracts very coherent groups, making
such macro features more robust and descriptive than single
points, in principle there is nothing that prevents the sys-
tem to still produce wrong or weak matches. To reduce this

chance we propose a different game setup that allows for
a further refinement. In this game the strategies set S cor-
responds to the set of paired feature groups extracted from
the affine matching game and the payoff between them is re-
lated to the features’ agreement to a common epipolar geom-
etry. More specifically, given two pairs of matching groups
a ⊆ M × D and b ⊆ M × D, each one made up of model
and data features, we estimate the epipolar geometry from
a ∪ b and define the payoff among them as:

�(a,b) = e−λ
∑

(s,t)∈a∪b d(t,l(s)) (5)

where l(p) is a function that gives the epipolar line in the
data image from the feature point p in the model image, ac-
cording to the estimated epipolar geometry, and d(p, l) cal-
culates the distance between point p and the epipolar line l.
It is clear that this distance is small (and thus the payoff is
big) if the two groups share a common projective interpreta-
tion and large otherwise. Of course, different pairs of groups
can agree on different epipolar geometry, but the transitive
closure induced by the selection process ensures that the
strategies in the surviving population will agree on the same
(or very similar) projective transformation (see Fig. 6 for a
complete example of this process). Regarding the estima-
tion of the epipolar geometry, it can be done in two different
ways: if we have at least the intrinsic calibration of the cam-
era we can estimate the essential matrix, by contrast, if we
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Fig. 6 An example of the selection of groups of features that agree
with respect to a common epipolar geometry. Six matching groups are
selected by the affine matching step (labelled from a to f in the fig-
ure). Each pair of feature sets is modeled as a matching strategy and
the payoff among them is reported in matrix �. Note that groups b,
c and d are correctly matched and thus exhibit a high mutual payoff.
By contrast, group a (which is consistent both in terms of photomet-
ric and affine properties), e and f are clearly mismatched with respect

to the overall scene geometry, which in turn leads to a large error on
the epipolar check and thus to a low score in the payoff matrix. At
the beginning of the evolutionary process each strategy obtains a fair
amount of players (T = 0). As expected, after just one iteration of the
replicator dynamics the most consistent strategies (b, c and d) obtain a
clear advantage. Finally, after ten iterations (T = 10) the other groups
have no more support in the population and only the correct matches
survived

do not have any hint about the camera geometry, we must
resort to a more relaxed set of constraints and use the funda-
mental matrix instead. In the experimental section we will
test both scenarios.

4 Experimental Results

We performed an extensive set of tests in order to vali-
date the proposed techniques and to explore their limits.
Both quantitative and qualitative results are shown and per-
formances are compared with those achieved by a stan-
dard baseline method, i.e. the default feature matcher in the
Bundler suite (Snavely et al. 2008).

4.1 General Setup and Data Sets

All the following experiments have been made by applying
a common basic pattern: first a set of features is extracted
from the images by using the SIFT keypoint detector made
freely available in Lowe (2003), then these interest points
are paired using the matcher we want to test, finally scene
and camera parameters are estimated by using the final por-
tion of Bundler pipeline (i.e. the part of the suite that ap-
plies Levenberg-Marquardt optimization to a set of proposed
matches). We evaluate three different approaches: The first,
referred to as Affine Game-Theoretic approach (AGT), uses

the affine matching game without the further refinement pro-
vided by the enforcement of the epipolar geometry. In this
case the iterative extraction and elimination of the groups
is image-based, i.e., after a group of matches is selected,
all the matches that have sources or targets close to the
source and target points of the extracted correspondences
are eliminated, and then the evolutionary process is reiter-
ated on the reduced set of strategies. The process is stopped
when an extracted group is smaller than a given threshold or
has average payoff smaller than a given threshold. This ap-
proach is the same described in Albarelli et al. (2010). The
second and third approaches, referred to as Calibrated Pro-
jective Game-Theoretic approach (CPGT) and Uncalibrated
Projective Game-Theoretic approach (UPGT) respectively,
make use of the epipolar refinement. CPGT assumes that
the camera intrinsic parameters are (approximately) known
and estimate the epipolar geometry through the essential
matrix, while UPGT uses the fundamental matrix. In both
these approaches the iterative extraction and elimination of
the groups is strategy-based, i.e., after a group of matches
is selected only those matches are eliminated from the strat-
egy set, thus allowing for the same features to appear in sev-
eral groups, while the stopping criterion here is the same
as that of AGT. In our experiments the intrinsic parameters
for CPGT have been estimated from the images EXIF infor-
mation. The three approaches are compared against the de-
fault feature matcher in the Bundler suite (BKM). This is a
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Fig. 7 Analysis of the performance of the Affine Game-Theoretic approach with respect to variation of the parameters of the algorithm

reasonable choice for several reasons: BKM is optimized to
work with SIFT descriptors and, obviously, with the Bundler
suite; in addition it is very popular in literature since Bundler
itself has been used as the default matcher in many of the re-
cent papers about SfM and dense stereo reconstruction. For
each test we evaluated two quality measures: the average
reprojection error (expressed in pixels) and the differences
in radians between the ground-truth and the estimated rota-
tion angle (�α). The first measure aims to capture the cu-
mulative error made in the reconstruction of the structure
and the estimation of the motion, while the second measure
aims to decouple the error on the camera orientation from
the one related to the scene reconstruction. This is possi-
ble since we used images pairs coming from a calibrated
camera head or image sets with an available ground-truth.
Specifically we used a pair of cameras previously calibrated
through a standard procedure and took stereo pictures of 20
different, isolated objects; in addition we also included in the
data set the shots coming from the “DinoRing” and “Temp-
leRing” sequences from the Middlebury Multi-View Stereo
dataset (Seitz et al. 2006). We conducted two main sets of
experiments. The goal of the first set is to analyze the impact
of the parameters, namely λ and quality threshold (q), over
the accuracy of the results. Since AGT and CPGT/UPGT
have different payoff functions and the selectivity λ is not di-
rectly comparable we investigate its influence separately. In
addition, all the experiments regarding the refinement meth-

ods are made using very relaxed parameters for the AGT
step. This is due to the fact that we are willing to accept
a slightly higher number of outliers in the first step in ex-
change for a higher number of candidate groups, in the hope
that the refinement process is able to eliminate the spurious
groups, but still resulting in a larger number of good corre-
spondences from which to perform parameter estimation. In
the second batch of experiments we compare our techniques
with the default Bundler matcher. In these experiments the
parameters are set to the optimal values estimated previ-
ously. We provide both quantitative and qualitative results:
the quantitative analysis is based on the errors in reprojec-
tion and motion estimation, while the qualitative results are
based on a dense reconstruction obtained using the recov-
ered parameters as an input to the PMVS suite (Furukawa
and Ponce 2010).

4.2 Influence of Parameters

The AGT method depends on two explicit parameters: the
sensitivity parameter λ, which modulates the steepness of
the payoff function (4), and q , i.e. the percentage of popu-
lation density with respect to the most represented strategy
that one match must obtain to be considered not-extinct. As
stated in Sect. 3.2, λ controls the selectivity of the selec-
tion process, while q allows to further filter the extracted
group based on its cohesiveness. Higher values will lead
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Fig. 8 Analysis of the
performance of the Calibrated
and Uncalibrated Projective
Game-Theoretic approaches
with respect to variation of the
parameters of the algorithm

to a more selective culling, while lower values will allow
more strategies to pass the screening. Figure 7 reports the
results of these experiments averaged over the full set of 20
stereo pairs taken with a previously calibrated camera pair.
The first row shows the effect of the selectivity parameter λ.
This is evaluated for three different q levels, from 0.3 to 0.7.
As expected, both low and high values lead to larger errors,
mainly with respect to the estimation of the angle between
the two cameras. This is probably due to a too tight and a too
relaxed enforcement of local coherence respectively. It could
be argued that the estimation of the optimal λ can be tricky

in practical situations; however, we must note that, with a
reasonable high q , it takes a very large sensitivity parame-
ter to obtain a worse performance than that obtained with
the default Bundler matcher. Regarding the quality thresh-
old, we can see in the second row of Fig. 7 that the best
results are achieved by setting a high level of quality: this is
clearly due to the fact that, in practice, the replicator dynam-
ics have converged to a stable ESS and thus most of the non-
zero strategies are indeed inliers and are mostly subject only
to the (small) feature localization error, thus exhibiting an
equally high density. In Fig. 8 we show the results obtained
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Fig. 9 Distribution of the
reprojection error in one
multiple view (top) and one
stereo pair (bottom) example

by trying different parameters with CPGT and UPGT. As
previously stated, these experiments were made by perform-
ing an affine matching step with relaxed parameters: namely
a λ value of 0.09 and a q of 0.6. The overall behavior with
respect to these parameters is similar to what observed with
AGT: very low and very high values for λ lead to less satis-
factory results (whereas in general better than those obtained
with the Bundler key matcher), and high q seems to guaran-
tee good estimates. Overall it seems that CPGT always gives
better results than UPGT. We will analyze this behavior with
more detail in the next section.

4.3 Comparisons Between Approaches

To further explore the differences among the proposed tech-
niques and the Bundler matcher, we executed two sets of ex-
periments. The first set applies the approaches to unordered
images coming from the DinoRing and TempleRing se-
quences from the Middlebury Multi-View Stereo dataset for
these models, the camera extrinsic parameters are provided
and used as a ground-truth. The rationale for using these
sets (in opposite to simple stereo pairs) is to allow Bundler
to optimize the parameters and correspondences over the
complete sequence. The second set is composed of two cal-
ibrated stereo scenes selected from the previously acquired
collection of 20 items, specifically a statue of Ganesha and
a handful of screws placed on a table. For all the sets of
experiments we evaluated both the rotation error of all the
cameras and the reprojection error of the detected feature
points. In the Middlebury sets the results are presented as
averages. The Dino model is a difficult case in general, as
it provides very few distinctive features; the upper part of

Fig. 10 shows the correspondences produced by AGT (left
column) in comparison with BKM (right column). The pa-
rameters were set to the optimal values estimated in the pre-
vious experiments (λ = 0.06 and q = 0.8). This resulted in
the detection of many correct matches organized in groups,
each corresponding to a different depth level, and visualized
with a unique color in the figure. As can be seen, the differ-
ent depth levels are properly estimated; this is particularly
evident throughout the arched back going from the tail (in
foreground) to the head of the model (in background), where
clustered sets of feature points follow one after the other.
Furthermore, these sets of interest points maintain the right
correspondences within the pair of images. The Bundler
matcher on the other hand, while still achieving good re-
sults in the whole process, also outputs erroneous correspon-
dences (marked in the figure). In the lower part of Fig. 10
we can see the results obtained with CPGT and UPGT with
λ = 0.3 and q = 0.7 after an affine matching step performed
with λ = 0.09 and q = 0.9. We can observe that CPGT gives
a significant boost to all the statistics. By contrast UPGT
performed worse than AGT (albeit still better than BKM).
This is probably due to the higher number of degrees of free-
dom in the estimation of the fundamental matrix and, thus,
to the reduced ability to discriminate incompatible groups.
In fact, we can see that the size of the groups obtained with
AGT is generally rather small (from 4 to about 10 points),
and it is easy to justify such a small number of correspon-
dences under a common fundamental matrix. The quality of
reconstruction following the application of all methods can
be compared visually by looking at the distribution of the re-
projection error in the top row of Fig. 9. While most repro-
jections fall within 1–3 pixels for the Game-Theoretic ap-
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Fig. 10 (Color online) Results obtained with two multiple view data sets
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Fig. 11 (Color online) Results obtained with two stereo view data sets
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Fig. 12 Comparisons of the point clouds produced by PMVS using
the motion estimated with different matching methods. Respectively
the Bundler default keymatcher (BKM), the Affine Game-Theoretic

technique (AGT) and the calibrated and uncalibrated projective tech-
niques (CPGT and UPGT)

proaches, the Bundler matcher exhibits a long-tailed trend,
with reprojection errors reaching 20 pixels. Unlike the Dino
model, the Temple model is quite rich of features: for vi-
sualization purposes we only show a subset of the detected
matches for all the techniques. While the effectiveness of our
approaches is not negatively impacted by the model charac-
teristics, several mismatches are extracted by BKM. In par-
ticular, the symmetric parts of the object (mainly the pillars)
result in very similar features and this causes the matcher
to establish one-to-many correspondences over them. In the
calibrated stereo scenario, the Ganesha images are rich of
distinctive features and pose no particular difficulty to any
of the methods. The Bundler matcher provides very good
results, with only one evident false match out of a total of
200 matches (see Fig. 11). The resulting bundle adjustment
is quite accurate, giving very small rotation errors and repro-
jection distances. Nevertheless, our methods perform con-

siderably better: reprojection errors dramatically decrease,
with around 98 percent of the feature points falling below
one pixel of reprojection error for AGT and 99 percent for
CPGT. Unfortunately UPGT is unable to refine the results
obtained with AGT, but still achieves smaller errors than
BKM. The second calibrated stereo scene, “Screws stereo”,
is an emblematic case and provides some meaningful in-
sight. The images depict a dozen screws standing on a ta-
ble, placed by hand at different depth levels. This configu-
ration, together with the abundance of features, should pro-
vide enough information for the algorithms to extract sig-
nificant matches. However, the scene is a difficult one due
to the very nature of the objects depicted, which are all
identical and highly symmetric, resulting in several features
with very similar descriptors and a difficulty in extracting
good matches based only on photometric information. In-
deed, several false matches are established by the Bundler
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matcher (see the last column of Fig. 11). Still, BKM results
in a reasonable estimation of the rigid transformation linking
the two cameras, as erroneous pairings are removed a pos-
teriori during the subsequent phases of bundle adjustment.
By contrast, the AGT approach outputs large and accurate
sets of matches, roughly one per object, and even difficult
cases, such as the left-right parallactic swaps taking place
at the borders are correctly dealt with. It is interesting to
note that in this case the boost given by CPGT is even more
significant than in the previous experiments, with a lower
average reprojection error and an overall better error dis-
tribution. Unlike with the previous cases, this happens by
reducing the number of total matches rather than increas-
ing it, as the refinement process eliminates correspondences
that are not globally consistent. In addition this time even
UPGT gives better results than AGT: a histogram of the re-
projection errors for this object is shown in Fig. 9. Finally,
a qualitative analysis of the different approaches is shown
in Fig. 12, where the estimated parameters and correspon-
dences are fed to the PMVS dense multiview stereo recon-
struction tool. The first and the second rows show the Dino
and Screws scenes from a frontal view, while the other two
show a top view of the same scenes. AGT and CPGT give
the best results for Dino with CPGT providing a more cor-
rect representation of the hollow area between the neck and
the first leg of the figurine and a smaller number of spuri-
ous points. With the screws scene CPGT allows by far the
more consistent reconstruction, while BKM is substantially
unable to offer to PMVS a satisfactory pose estimation.

4.4 Complexity and Running Time

With respect to complexity all the Game-Theoretic ap-
proaches are dominated by the steps of the replicator dy-
namics. Each step is quadratic in the number of strategies,
but there is no guarantee about the total number of steps
that are needed to reach an ESS. We chose to stop the it-
erations when the variation of the population was below a
minimum threshold. Execution times for the matching steps
of our technique are plotted in Fig. 13; the scatter plot shows
a weak quadratic growth of convergence time as the number
of matching strategies increases with a very small constant
in the quadratic term, resulting in computation times below
half a second even with a large number of strategies.

5 Conclusions

In this paper we introduced a novel Game-Theoretic tech-
nique that performs an accurate feature matching as a pre-
liminary step for multi-view 3D reconstruction using Struc-
ture from Motion techniques. Unlike other approaches, we
do not rely on a first estimation of scene and camera param-
eters in order to obtain a robust inlier selection, but rather,

Fig. 13 Plot of the convergence time of the replicator dynamics with
respect to the number of matching strategies

we enforce geometric constraints based only on semi-local
properties that can be estimated from the images. In par-
ticular, we define two selection games, one that selects lo-
cal groups of compatible correspondences, enforcing a weak
affine camera model, and a second consolidation game that
filters out groups of matches by considering their compli-
ance with the epipolar constraint. Experimental comparisons
with a widely used technique show the ability of our ap-
proach to obtain a tighter inlier selection and thus a more
accurate estimation of the scene parameters.
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