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Abstract— It is common experience that, through practice,
tools disappear from our awareness. This form of perceptual
learning occurs at all stages of life. In this paper we outline
a model of “tool-body assimilation” and tool use inspired by
recent findings in neuropsychology and neurophysiology. Our
model is based on three assumptions: 1) the body schema is
plastic and alterable and can extend to incorporate tools; 2)
objects can be adapted in-situ to act as tools; and 3) tools
are used on the base of their functionality. We evaluate our
model by instantiating it in a simulated tool-using robot which
learns to handle tools of various shapes to retrieve an object
placed out of sight and out of reach. We discuss the model’s
plausibility to explain tool-body assimilation in humans and
other tool-using primates.

Index Terms— Tool-use; body image/schema extension; sen-
sor fusion; contingency; adaptive robotics; embodied intelli-
gence

I. Introduction

It is often the case that through practice tools disappear
from one’s immediate awareness by becoming part of
oneself or of the task [1], [2]. Sometimes, it is even possible
to actually “feel” the object manipulated with a tool as if
touched with the bare hand – an astonishing fact given that
tools are non-corporeal, typically sensorless objects.

At least as astonishing is a finding that comes from a
study showing that the judgement of subjective temporal
order of taps delivered in rapid succession to our hands
is inverted by crossing arms [3]. If the taps are delivered
to the tips of sticks held in each hand the crossing of the
sticks results in a similar reversal suggesting that the tactile
signals are referred to the tip of the sticks [4]. This result
finds empirical support in neurophysiological research on
tool-using monkeys which examines the plasticity of a class
of bimodal neurons in the monkey’s intraparietal cortex [5],
[6] (such neurons respond to both somatosensory and
visual information originating from the monkeys’ hands).
Interestingly, after only five minutes (or less) of using
a hand-held rake to retrieve distant objects, the visual
receptive fields of the bimodal neurons expand to include
the entire length of the tool used [5] (this happens even
for video-captured images of the tool projected on a video
monitor [6]).

These intriguing findings seem to indicate that the brain
refers to the tips of the sticks (or of any other tool, for that

matter) as if they were the hands. We deduce that humans
and maybe also other primates “process” contacts through
the hands and through tools in the same way. Tools act as
mediators of kinesthetic and haptic sensation, so to speak.
We call this cognitive capability “tool-body assimilation,”
or TBAS for short. In our daily lives many examples of
TBAS exist. By way of illustration, imagine how to retrieve
with a branch a coin that dropped to the floor and rolled
under a vending machine (Fig. 1): we first search for the
coin using the branch, then pull the coin closer to us, and
finally reach for it with our unaided hand. We imply that
some kind of TBAS is at work which helps to estimate the
actual position, orientation, and shape of the non-visible
coin with the branch.

Drop a coin Hard to find Come across a branch by accident

Pick up and identify the tool Poke and reach with the tool Finally, retrieved

Fig. 1. Blind retrieval task as an instance of tool-body assimi-
lation. When retrieving a coin from beneath a vending machine,
the contact between the “improvised” rake and the coin feels as
originating from one’s hand.

From the above discussion, we abstract three principles
of tool-use which may be applied to the construction of a
model of tool-body assimilation.

1) Principle of sensory extension: From an information
processing point of view, we need to be able to detect the
contact position and sense the contact forces between tool
and manipulated object. Without access to such informa-
tion, it is impossible to estimate the position of the object,
to detect the contact, or to predict the motion of the object
after contact. Nor would it be possible to plan or execute
the necessary movements to handle the object.

2) Principle of in situ adaptation: Because we cannot



carry around at all times a toolbox and because there is
no such a thing as a universal tool, it is often necessary to
adapt objects found in situ as “improvised” tools.

3) Principle of generalizable functionality: The function-
ality of a tool needs to be “understood” independently of
its form or shape. If we know how to apply a tool only
to a particular object, generalization to an object found in
situ is difficult – which conflicts with the principle of in
situ adaptation. This suggests that a tool can have several
meanings: the tool itself, the function that it can perform,
and its potential role in achieving its user’s goal [7].

These principles crystallize in an extremely compact
form intuitions that may be applied to the design of
robots. Tool-use allows robots to extend their physical body
structure and, consequently, their action space, and is thus
regarded as a skill enhancing their autonomy. Many of the
robots that use tools (e.g. [8]) are endowed with a priori
knowledge about the shape and the inertial properties of
the tools they wield. The knowledge is given to the robot
by the designer implying that the robot does not comply
with the principle of in situ adaptation. To the authors’
knowledge, there is still no robotic system which satisfies
the three principles outlined above.

The paper is organized as follows. In Sec. II, we present
a set of computational hypotheses derived from findings
in physiology. In Sec. II-C and Sec. III, we first expose
our computational model of tool-body assimilation, and
then provide the details of its implementation. We describe
the experiment and the obtained results in Sec. IV. Be-
fore concluding, we discuss the implications of our study
for understanding adaptive tool-use in humans and other
primates.

II. Computational hypotheses

In this paper, we make the distinction between primary
tools and secondary tools. Whereas the former can be
easily “internalized,” that is, incorporated into a neural
representation of the body (e.g. a stick or a hammer),
the latter are subject to their kinematic constraints and
dynamics (e.g. a door knob). Some tools belong to both
categories. For example, scissors represent a secondary tool
when used to cut paper; when used as a stick, however,
they are a primary tool. Because primary tools are more
fundamental than secondary tools, here we deal only with
primary tools.

In the rest of this section, we will formulate a set
of hypotheses which we will use to motivate the model
of tool-body assimilation described in Sec. II-C. The
hypotheses were derived from recent neurophysiological
and neuropsychological research: 1) Tools are assimilated
and incorporated in the body representation; 2) tool-body
assimilation co-occurs at the level of action, sensation and
recognition; and 3) the spatial perception of the body is
altered by synchronization of multiple sensory modalities.

A. TBAS in the brain

The brain contains multiple representations of the body.
At the cognitive level, one can define two distinct and

complementary definitions of body representation [9]: the
body schema and the body image. While the former is a
non-conscious neural map of the spatial relations among
the body parts which integrates multi-modal sensory infor-
mation, the latter is consciously manipulable and relates
to the phenomenal experience of one’s own body (self-
awareness). In the context of this paper, we will simply
talk about “body representation” to indicate a neural rep-
resentation integrating multisensory information about the
body. It has been shown that tool-body assimilation of
primary tools (which are physical extensions of the body),
is caused by the incorporation of tools in such a body
representation [10].

B. Three aspects of TBAS

We often use primary tools and our body in the same
way. For instance, we are able to use either our hand or a
rake to retrieve distant objects. Tools are not only adapted
in terms of motion (kinematics) – think of a hammer, or
a prosthetic arm or foot [1], [11] – but also in terms of
sensation. In other words, sensory and motor adaptation
co-occur. Such co-occurrence has been observed in humans
or chimpanzees using tools [12], in horses with prosthetic
feet [13], and in birds retrieving food with branches [14].
In terms of functionality, we can recognize tools and our
body in a similar manner (e.g. we can “see” a hook as an
alternative to our finger). It means we effectively abstract
and generalize the functionalities of our body. Although
motion, sensation and recognition differ from each other,
they are also complementary which makes it hard to realize
TBAS based on only one mechanism of adaptation. We thus
hypothesize that TBAS relies on a multivariate stream of
sensory information: with respect to motion, to sensation,
and to recognition. Consequently, our computational model
of TBAS will combine three coupled functional modules.

C. TBAS through synchronization

Bodily changes are recognized through alterations in
the sensory stream. It is natural to ask what sensory
information allows detecting bodily changes. There is a vast
literature which examines the relationship between body
representation and sensory integration. For instance, if a
visual and a tactile stimulus occurring at different locations
are synchronized, we tend to feel as if both stimuli originate
from the location of the visual stimulus [15]. This illusion
might be influenced by the preliminary learning of spatial
and temporal relationships among multisensory information
obtained by the body. Here, we note that the spatial
perception of the body is altered by temporal synchroniza-
tion between multisensory information. We hypothesize
that coincidence (synchronization) plays a major role in
detecting bodily changes and hence is an essential part
of the adaptation of the body representation [16], i.e. the
assimilation of primary tools into the body. sectionModel
of tool-body assimilation

In this section we propose a computational model of
TBAS which capitalizes on the three hypotheses exposed in
Sec. II. The conceptual diagram of our model is illustrated



in Fig. 2. According to the three principles of TBAS,
tool-using agents need to be endowed with the following
capabilities: 1) they need to be able to identify inertia
parameters of tools, and 2) they need to be able to visually
detect objects moving in congruence with their body. These
two processes can be juxtaposed during a swing of the
tool because they do not depend on each other (one being
kinesthetic and the other visual). After the identification
of tools, agents alter their body representation to adapt to
the change caused by holding the tools. Such alteration
enables agents to use forward models, “motion planners”
or “generators” originally designed for their bodies, also
for tools, and to exploit physical principles experienced by
their body during tool use (see also principle of generaliz-
able functionality).

alteration
Experience of
manipulation learning

Estimation of
contact force and position

Planning and 
motion generation

Swing

Inertia identification Visual tool detection

Visual-haptic associator Body representation

Principle of
sensory extension

Principle of
in situ adaptation

Principle of
generalizable functionality

Fig. 2. Conceptualization of computational model of tool-body
assimilation.

To simplify the discussion (see Fig. 3), let A be a tool
wielded by the agent, let B be a goal object (e.g. the object
to be retrieved), and let ro be the location of the hand on a
body-centered coordinate system (the absolute coordinate
system). We denote the location of the COG of A with
the symbol rg, and the contact point of A and B with rh.
During the contact, the force and the torque exerted by the
hand on A are fo and τo, respectively; whereas, the force
and the torque which are exerted by B on A are f h and τh.

D. Instantaneous sensory extension

From the principle of sensory extension follows that
the agent needs to be capable of instantaneously sense
contact locations and contact forces between tools and
target objects. Here, the contact locations and contact forces
are estimated from the kinesthetic response of the hand
(force and torque), under the assumptions that 1) the tool
is rigid objects and 2) the contact with a target object is a
point contact, i.e. occurs only at one location (Fig. 3).

As can be shown analytically in this simple case (we
omit the derivation), the agent is not able to compensate
for the dynamics of the tool A without knowing its inertia
parameters, that is, its mass m, its moment of inertia Ig,
and the location of its COG rg. Only if these parameters
are known (see Sec. II-E), it is possible to obtain a
straight “reference” line from the estimated force fh and
the moment τh. Although not biologically plausible, such a
“line” is of computational importance because it allows to
reduce the number of candidate contact points. In order to
reduce this number further, the agent needs to know also

Contact point

Manipulator

Tool (object A)
COG

rh
rg

Contact force ro

¿o

fo

fh

Reference line

Target (object B)

Fig. 3. Manipulator handling a rigid tool.

the shape of the tool (such knowledge allows the agent to
calculate the point of intersection between line and shape).

E. Identification of inertia parameters

As pointed out in the previous section, to simultaneously
satisfy the principle of sensory extension and the principle
of in situ adaptation, the robot has to be able to estimate
the inertia parameters of the tool during swings. From the
equations of motion of A, we can then derive the force f o

and the torque τo which are a function of the tool’s inertia
parameters. The analytical solution is rather straightforward
to obtain by solving the linearized version of the equations
of motion of the tool (the derivation is omitted here for the
sake of brevity).

F. Visual detection of tools

As mentioned above, for the model to work, the agent
needs to know the shape of the tool. The shape is used
to estimate the contact location and kinematic change by
tool to control the tool; otherwise, it can not move the
tool by feedforward. We assume that the agent obtains the
shape of the tool visually. All moving objects extracted
from vision do not physically connect to the body under
normal conditions. The agent has to discriminate a tool
(an object held in its hand) from other objects; because it
needs to detect tools in situ from a set of objects presented
visually.

A better way for the agent is to use synchronization
between the motion of the body and the multiple objects.
Any location ra on the handled object A can be expressed
in the absolute coordinate system as ra = ro + Ro l. This
equation means that ra is a linear function of variables
that can be acquired: the position of the hand ro and the
rotation matrix Ro; l is a constant vector indicating ra −
ro in the hand-centered coordinate system. By exploiting
such linearity the agent can “decide” whether an object is a
tool by simply calculating the time-correlation between the
translational and rotational velocities of its hand and each
visible object. The time-correlation can be obtained with
correlation analysis, or synchronization detection between
variables.

Once the agent has extracted the objects (tools) to which
it has to pay visual attention, it will be easier to acquire the
shape of the tool used. As for motion control, it also enables
to learn the kinematic change of a part of its body by
holding the tool because there is a simple affine relationship



between the locations of the hand and the held tool, whose
parameters are easily identified.

G. Generalizing functionality

The principle of generalizable functionality postulates
that the functionality (meaning) of a tool is independent
of its physical appearance, i.e. shape or form. It is such
independence that allows the agent to plan and execute
movements of the tool as if it was part of the body.
The implication is that although the body representation
changes, the knowledge of functionality remains unaltered.

In the blind retrieval example given in Fig. 1, the
agent has to first learn how a target moves through haptic
feedback only. Such learning of motion change by contact
is essentially a problem of sensory integration. The agent
perceives contact forces only when it directly touches
another object; meanwhile, motion of the object should be
determined without any physical effect on it. Assuming
that this can be done by vision (non-contact sense), gener-
alizable functionality becomes a synonym of integration of
visual and tactile information. We thus implement a module
called visual-haptic associator (Fig. 2).

III. Experimental Setup andModel Implementation

To evaluate our model, we start by defining a task similar
to the one represented in Fig. 1. In this task TBAS seems
to play a crucial role. We implement each function in our
computational model and instantiate it in a simulated robot.

A. The robot and its task

The robot is equipped with a camera unit (128x128
pixels resolution) and a 3-DOF planar manipulator to which
various primary tools can be attached. The working space
of the robot is a semi-circular area located in front of the
robot (the robot, its working space, and the tools used are
shown in Fig. 4). The task that the robot needs to solve
is a “blind retrieval task” – an abstraction of the example
given in Sec. I (Fig. 1) – in which the experimenter hides
a target object under an opaque screen (the “blinder”).
To solve this task, the robot has at its disposal a set of
five tools whose characteristics are a priori unknown to
the robot. The robot’s manipulator is covered with a large
number of tactile sensors (allowing it to detect contact with
a high precision), and endowed with angular as well as
kinesthetic sensors located in each joint. A movable target
object is placed out of the robot’s field of view and out of
its reach. The motion of the target object is constrained to
the working plane. The only means by which the robot can
determine the location of the target is by poking it with its
end-effector or with any of the available tools. The task
is declared accomplished when the target is successfully
retrieved or when the robot “discovers” that the target does
not exist or is out of reach of the tools.

B. Identification of tool and target object

Because the tools move while the robot is wielding
them, it is possible, by comparing the motion information
originating from the tools with the one of the body, to

x

y

Blinder

(0, 950)

I-shaped
T-shaped

F-shaped

(0, 0)
Manipulator

Target
branch-shaped

cloud-shaped

Fig. 4. Experimental setup consisting of manipulator, blinder,
target object, and available tools. The units are [mm].

segment the tools from the background. The robot extracts
and tracks the objects in its field of view through a
background image subtraction scheme (to segment objects
from the background, the flood fill algorithm [17] is used).
The resulting objects are then further processed, and the
following features are estimated: the object’s center in
absolute coordinates (COF), its color, and the direction of
its principal axis.

The time-correlation between essential variables of the
tracked objects is then calculated (the object’s color is
used for the tracking). This operation is realized via the
canonical correlation analysis (CCA) [18]. Any object that
has a high correlation is regarded as a tool and its contour
is approximated by a polygon which is then incorporated
in the robot’s body representation (which is realized as a
list structure).

The robot first estimates the inertia parameters of the
tool by solving the tool’s equations of motion. Using the
identified inertia parameters, the robot can obtain the con-
tact force fh between the tool and the manipulated object.
Moreover, it can estimate the locations of the candidate
contact positions with respect to the origin (reference line).
The robot then calculates the intersection between the
reference line and the registered shape of the tool, and,
based on the intersection point, thus reduces the number
of candidate contact points to a finite number. Utilizing
its action history, the robot can decrease the number
of candidate points even further. The estimated contact
position and force is eventually fed to the visual-haptic
associative memory (Fig. 2).

C. Associative memory

The estimation of spatial information from haptic cues
is crucial in the blind retrieval task. Assuming constant
gravity and friction, it is easy to show that the displacement
of the target is essentially proportional to the energy
supplied to it by the “force impulse” fh δt and the “torque
impulse” τh δt. According to this consideration, we imple-
ment an associative memory which associates the square of
the force impulse fh δt and displacement. Given a “force
impulse” fh δt and τh δt, it is therefore possible to recall
the estimated displacement of the target.

The relationship between the displacement and kines-
thesis is a function of the postural state of the target. The
robot treats the output of the memory as a probabilistic
field. Finally, it can estimate the existence probability of
the target by using the measured contact force and torque.



D. Motion planning and generation

The robot’s controller relies on a model of the manip-
ulator’s kinematics, a planner and a movement generator
(although not done here, one could endow the robot with
means to learn the model). All functional modules are
realized by resorting to standard robotic techniques. For
instance, the adopted path planner is RRT-connect [19].
The robot is endowed with an “innate” motion strategy,
which sweeps the manipulator over a region in which
the target object is likely to be found. Force impulses
applied to the object during a retrieval action are fed to
the associative memory, and are used to estimates the
probability that the target is in a particular region. The
robot checks systematically all faces of the tool (the tool
is approximated as a polygon) in terms of closeness from
the center of the likelihood map, and based on the result
decides whether to use the face for a retrieval action.

IV. Experiments and Results

All experiments begin with the specification of a tool,
which is put in the robot’s hand by the experimenter. To
identify the tool, the robot first swings the tool for approx-
imately 5 sec (Fig. 5), and calculates the CCA between the
sensory information associated with the movement of the
hand and of each object obtained through tracking. Only
in the case of “handled” objects is the movement of the
body correlated with the movement of the object. In other
words, the correlational values are high and the object can
be detected as a tool – the correlation for the moving
box decreases after a while (see “contingency check” in
Fig. 6). Subsequently, the robot extracts the contour of the
tool, and incorporates the resulting polygonal shape into
the body representation (by extending the list structure
defining it). Concurrently, the robot identifies the inertia
parameters of the tool (mass, moment of inertia and COG).
Such identification is accurate and is done with an error
bound to below 1%.

Fig. 5. Top: robot wielding I-shaped tool. Bottom (from left to
right): object moving in round path, manipulator, and tool.

The robot solves the blind retrieval task with the shape
and inertia properties obtained above, and with a previously
learned associative memory which maps visual and haptic
information. The results for four different tools are repro-
duced in Fig. 7. As evident from the figure, for each tool,

 0

 0.2

 0.4

 0.6

 0.8

 1

 

C
an

on
ic

al
 C

or
re

la
tio

n 
V

al
ue

(C
on

tin
ge

nc
y)

time (ms)

Contingency Check

Moving box

I-shaped

Arm

F-shaped

T-shaped

 0  600  1200 2400 3600 4800

Fig. 6. Contingency check via canonical correlation as a function
of time.

the robot successfully solves the blind retrieval task. The
figure also shows that the movement sequence generated
for retrieving the target depends on the shape of the handled
tool. The branch-shaped tool allows quasi-grasping; the
cloud-shaped tool retrieves the object in one single “shot”
(this latter tool is heavy and fh δt is thus quite large).

t = 6480 [msec]

6660

7620

8280

8970

t = 4350 [msec]

5040

6000

6150

6720

Branch-shaped Cloud-shaped

t = 5400 [msec]

6480

7020

9180

10530

F-shapedT-shaped

t = 6480 [msec]

7200

7920

8640

9360

T
im

e

Fig. 7. Blind retrieval with T-, F-, branch-, and cloud-shaped
tools. The gray rectangle indicates the “blind” zone.

Another significant result is displayed in Fig. 8. The
snapshots show how the likelihood of an object occupying
a specific position changes over time (the object is hidden
under the blinder). After the first contact between tool and
target object, the uncertainty concerning the object location
decreases drastically. This is done by feeding the estimated
contact impulse fh δt and position rh to the associative
memory which return the possible target region after the
contact. Doing the retrieval motion against the possible
region derived from the given strategy, the estimated region
gradually moves to the center of the body. Finally, the blind
retrieval tasks are accomplished.

Our results indicate that TBAS is crucial for solving the



blind retrieval task. Estimating the contact location (the
location of the target object) on the held tool from the
kinesthetic response of the hand, the robot can do efficient
retrieving motion.
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Fig. 8. Likelihood of object location over time during blind
retrieval using T-, F-, branch- and cloud-shaped tools (from top to
bottom). The bright (yellow) tiles correspond to a high likelihood;
the dark tiles to a low likelihood.

V. Discussion

We proposed a model of tool-body assimilation (TBAS)
which capitalizes on three principles of tool-use: 1) the
principle of sensory extension; 2) the principle of in situ
adaptation; and 3) the principle of generalizable function-
ality. The central issue of the model is the identification of
the shape and of the inertia parameters of the tool used. By
incorporating these parameters into its body representation
the robot can use different tools to solve the same task.
We instantiated our model in a physics-based simulated
robot. The robot adaptively completed a blind retrieval task
using a set of tools which were a priori unknown. Our
experimental results provide “synthetic” support for our
model of TBAS, and shed light on the type of information
processing necessary for TBAS to occur.

The model of TBAS validate the three computational
hypotheses put forward based on physiological findings.
Are we allowed to say, however, that the implemented
functional modules are biologically plausible? Support for
the identification of the inertia parameters comes from a
phenomenon called “dynamic touch” during whose occur-
rence humans seem to perceive the length of an object
through inertia parameters estimated through kinesthetic
response on our hands [20]. Detecting objects synchronized
with the body motion in vision is particular to humanoid
apes, who can recognize mirror images of their bodies [21].
From these findings, we deduce that our model and its

functional modularity have some biological plausibility and
synthetically explain our capability of the TBAS.

In our experiments, various tool-dependent ways of
retrieving a distant object emerged. These emergent tool-
using behaviors allow us to hypothesize that agent-
environment interaction plays a fundamental role in rec-
ognizing functionality and usability of tools in situ. We
emphasize that this abstraction is a “higher-level form” of
tool-use as compared for instance to object manipulation
through touch. The modeling of autonomous recognition
of tool functionality will be addressed in future work.

We conclude by noting that although this study repre-
sents a step forward, the mechanisms underlying TBAS in
vivo remain largely unknown.
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