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Abstract

Body physical and spatial properties change because of unexpected accidents or objects it wears

(e.g. tool). To keep stable and consisntent behaviors in acting time, it is necessary to adapt

body representation to the unexpected changes. This adaptation is achieved when a robot sustains

its coordination between sensation and body motion; i.e. observation and identification of the

discrepancy between its knowledge and actually obtained sensory feedback. For the sustainability,

the robot should autonomously judge the reliability and the tolerance of the identification. Standing

on basic mathematics, we propose a method with an indirect but clear criterion of the reliability

for the sustainable coordinations in this paper. We also implement the method on visual-motor

coordination and on kinesthetic-motor coordination. Remarkably, our method achieves marker-free,

easily convergent and enough accurate (i.e. easily applicable) hand-eye calibration method with

irrelevant objects in view. The evaluation of the method is provided with experiments in a real

robot. Our experimental results show the novelty of the concept of sustainable coordination and

the availableness of our method for the concept. We hope this paper be a powerful approach for

building autonomous robots.

Keywords: Adaptive body schema, Tool-body assimilation, Marker-free hand/head-eye calibration,

Inertia identification, Convergence criterion

1 Introduction

Our daily behaviors deeply depend on coordinations among informations which have different modalities:

motion, vision, kinesthesia, or so. Without those coordinations, we could neither reach a visible cup

(visual-motor coordination), nor touch and grope an invisible place (kinesthetic-motor coordination).

These abilities are obviously primary for us; i.e. they are also essential for the robots who autonomously

act in the real world.

As for almost all past robots, their designers built a-priori in those sensory-motor coordinations.

Although, of course, this design strategy works quite fine in designed and regulated situation, the de-
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signers should preliminarily know “everything” about the situation. However, there are situations where

preliminary built-in coordination is inappropriate to use; i.e. a robot has to obtain the coordinations

by itself. For instance, we can assume situations where physical reaction unexpectedly causes the spa-

tial alignment of robot’s equipments to change, or it purposely picks up and holds unexpected objects

(e.g. tools). That is, robots should sustainably observe and identify the necessary coordination in their

working period (sustainable coordination); otherwise, they can not keep stability and consistency of

their behaviors.

In our past research [1, 2], we clarified adaptation of kinematic hand-eye coodination and kines-

thetic inertia identificaiton are essential for robotic tool-use. Pursuing our past research, we mainly

focus on and discuss those coordinations in this paper: hand-eye (visual-motor) coordination and in-

ertia (kinesthetic-motor) identification. We know those coordinations are primary and inadvertently

performed by animals. Unfortunately we also know robotic techniques for the sustainable coordination

are yet below the level of animate life. In Sec. 2, we review the existing techniques and their deficiency.

To find a clue to complement the techniques, we also introduce and discuss physiological, biological,

and brain-scientific literatures.

Our discussion points out that the robotic system should have two autonomous abilities for the

sustainability: detection of self-derived information, and estimation of allowable error in identification.

The former is necessary to filter irrelevant information and accelerate the identification; and the latter

is to determine the beginning/end of the identification. Corresponding the two abilities, we introduce

two methods in Sec. 3. One method is to detect self-body in camera view, which works as a filter of

unnecessary visual information. This detection method is marker-free, convergence-free, and enough

accurate because of a “motion coincidence” criterion. The other method is to estimate the allowable

error, which can be a threshold to switch between observation and identification. Because this estimation

method uses singular values, it can share the calculation with the identification process; i.e. it works

simultaneously with identification. We combine the two methods into a sustainable coordination method.

For the applications of our method, we also show its implementations for the hand-eye coordination and

the inertia identification in Sec. 3.

In Sec. 4, we experiment our method in a real robot equipped with an arm, a stereo camera, force-

torque sensor and computers. The robot switches observation and identification in response to the

disturbance provided by the experimenter. Our results indicate its sustainability for the coordination.

Based on the experiments, we discuss the future of our method in Sec. 5, and conclude this paper

in Sec. 6.
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2 Sensory-motor coordination in robots and animals

2.1 Hand-eye coordination

If the kinematics of the held object (tool) is given, a robot can use it and learn more higher-level

tasks such as the tennis-playing robot of Miyamoto and Kawato [3]. However, the kinematics is easily

changeable and unknown even when the robot purposely picks up a novel object. Body, as well as a

held object, is also easily changeable and unknown in essentials. Unless spatial information of its body

is a-priori given, a robot cannot know even its body area in the camera view. Yoshikawa [4] proposed

a method to extract the body area exploiting the fact that the body is stationary to the camera during

the body waggling. However, it does not include the binding with the joint motion which causes the

visible motion; i.e. it cannot identify the body kinematics. Without the body kinematics, the robot

cannot use the extracted body area to generate motions.

To address the binding problem, researchers have proposed the methods using “motion contingency”

cues; “motion contingency” means nature where incoming information changes in response of body

motion. A robot of Michel et al. [5] estimated time lag between camera and joint angle sensors using

the timing of their motions co-change; clustered the areas which have the similar time lag; and define

the clustered areas as the body area. Unfortunately because it used a difference images to estimate

visual motion, the body area obtained by their method included non-body background, and was hard

to exclude moving objects but body parts.

There are methods using optical flow to obtain visual motion. A method of Kemp and Edsinger [6]

divides camera image to subimages, calculates the mutual information between the body motion and

the optical flow within each subimage, and determines the subimage which is most effected by the

body motion. To calculate the mutual information, it first clusters largely changing subimages and joint

angles. One variance (vision) is spatially calculated within each subimage cluster, and the other variance

(body motion) is temporally done within each joint angle cluster. By obtaining the mutual information

from these variances, the body area is estimated as the area of the highest mutual information at the

joint angle cluster including the angle. Their method enables a robot to learn the body area in case of

other irrelevant moving objects in camera view due to the law of large numbers. However, it requires

a large amount of well-balanced data samples to obtain the mutual information on all subimages. This

fact inevitably makes their method offline.

A online method was proposed by Fitzpatrick and Metta [7] divides camera image to subimages,

calculates cross-correlation between each joint angle and the optical flows within each subimage, and

determines the body area. Because of linearity of cross-correlation, their method can detect the plausible

body area at a short time in case of other irrelevant objects in view. However, the linearity of cross-

correlation is weak to non-linear transformations which are innate in optical system: refraction, reflection

or perspective. Furthermore, it is not clear how to deal with fake or negative correlation. To manage

the non-linearity in optical system, Natale [8, 9] proposed to use periodic body motion to extract the
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visible body area which moves at the same period as the body motion. His method restricts robot’s

motion to periodic one; i.e. the robot is hard to determine the body area at shorter time than the time

which is taken to estimate the period.

The methods reviewed above aspire for the learning of kinematics with the joint angles as input.

However, a lot of data samples are necessary to learn the kinematics, which is generally a non-linear

function. On the other hand, the kinematics of an object (tool) held by the robot hand is obtained as

a linearly transformed kinematics of the hand [1, 2, 10].

Kemp and Edsinger assumed only the tips of daily tools are usable, an they proposed a stable

method to estimate the 3D coordinate of the tip of the held object with a joint angle input [11]. Their

significant assumption is that the tip of a tool always has the largest optical flow in the camera view. 3D

coordinates of the tip are measured by a stereo camera for the learning samples. The robot offline learns

probability relation between the obtained 3D coordinate and 2D image coordinate, and estimates the

3D coordinate which has the maximum likelihood with both the joint angle and 2D image coordinate

as input Because of their assumption, the conditional probabilities which are calculated in their method

ends up inaccurate when other moving objects are in the camera view, and the calculation requires

much more well-balanced data samples. This requirement is ill-fitted to the case where the held object

(tool) is frequently changed. Moreover, the velocity of the tip of a serial-link manipulator is not always

maximal in view. If we actually adopt their method, it is necessary to control the velocity of the tip to

be maximal in the camera view, or to keep other body parts out of the camera view.

In our previous work, we focused on the linear time-invariant relationship between the coordinates of a

body part and a object fixed to the body part, and we proposed a method using the canonical correlation

to identify a held object or body parts [2]. Our robot instantly and stably obtained kinematics of a new

held object, exploiting known kinematics of the body. Of course, our method have a similar problem to

the method of Fitzpatrick and Metta [7] because of linearity of the canonical correlation.

In Sec. 3, we propose a novel method to rapidly identify body parts in camera view in order to

compensate the conventional works. Our novel method uses optical flow and a simpler but robust

criterion than motion period; we no longer need motion restriction such as periodical one.

2.2 Inertia identification

A robot has to know the inertia parameters of its held or adhered object to detect a touch on it [2]. How-

ever, the inertia parameters are liable to change due to situation. The robot should extemporaneously

identify them, and autonomously determine whether the identification is enough or not.

Inertia parameter identification is a field of robotics [12]. Many methods in the early period identified

and provided mass, length or COG of the links as inertia parameters, which exploit different cues: e.g.

static torque by gravity [13], frequency response to input [14], or joint angle information to estimate [15].

For identification of inertia parameters including link length and COG, we know methods using

pseudo-inverse matrix [16, 15] or Kalman filter [17]. The method of Sujan and Dubowsky [18] uses mutual
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information, and deduce body motion to accelerate the convergence of the Kalman filter. However, those

methods do not provide us a relevance criterion of the identification nor an autonomous way to determine

the beginning/end of the identification.

We point out their problem for the sustainable identification is the usage of the least-square method,

which is directly adopted to the identification equation. In Sec. 3, we propose another simple way

which adopts the least-square method to calculate the dimension of the null-space of the identification

equation. It takes small computation cost and provides easy detection of convergence, which is better

suited for a sustainable online method.

2.3 Sustainable coordination in animals

2.3.1 Brain’s adaptation to foreign objects

Many animal species hold a object on the body using their hands or mouthes [19]. This holding

leads to the change of sensory-motor coordination. The adaptation to the change is often seen (i.e.

sustainable) in various animal species. Berlucchi and Aglioti [20] said a human adapts its multi-sensory

body representation in the brain to a foreign object. Here, focusing on “touch,” we review what behaviors

are allowed by the sustainable coordination, and how the multi-sensory coordination is represented in

the brain.

When we ape touch an object by the held tool, we feel and deal with the held one as if it is our own

hand [21]. We also imagine the invisible edge of a worn hat and go under a gate without touch [22].

We human [23] and horses [24] adapt to prosthetic limbs alternative to amputated limbs. We can say

many animals (at least, ape) are able to manipulate and feel a foreign object as their own body after

adaptation. By this ability, for instance, we can grope in invisible space using an extemporaneously

obtained object [2]; or wild gorillas observed by Breuer et al. [25] could stab a picked-up branch into

water hole and measure its depth.

In macaque’s intraparietal cortex, there are bimodal neurons responding to visual and tactile stimuli

on its hand. Iriki et al. [26] showed the visual receptive field of the bimodal neurons extend to its held

tool [26]. This phenomenon occurs under conditions where a tool is hidden behind a blinder [27], or

even whre a tool is reflected on a TV monitor [28].

Yamamoto et al. reported the phenomenon where a reversal of temporal judgement of subjects when

the experimenter gives tactile stimuli with several hundred millisecond interval on the subject’s crossed

hands respectively [29]. They also showed a occurrence of the phenomenon when subjects hold sticks

by each hand, and cross only the sticks or only the hands [30].

The knowledge provided by Iriki et al. and Yamamoto et al. seems a proof that the brain deals

with a foreign object (tool) as a part of the body. That is, it suggests the brain internally as well as

behaviorally adapts its body representation to extemporaneously attached objects on the body, even

when it is obtained temporarily.
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2.3.2 Kinesthetic adaptation: cognitive scientific view

To perceive a contact location on the surface of a held object without vision [25, 30] is a estimation

problem of the contact from kinesthetic response coming through the object. To physically address

this problem, inertia parameters of the object are necessary to know explicitly or implicitly [2]. Only

if those parameters are known, an agent (robot/human) can estimate the force and torque generated

by a contact; it derives a possible line of the contact location in 3D space from the estimated force

and torque; it estimates the contact location as the intersection between the line and the surface of the

object. Here, the surface other than the contact point never effect the estimation in principle. This

notion is experimentally supported; the reversal of temporal judgement of subjects [30] occurs even with

various shaped tool [31].

Do animals “know” inertia parameters of a foreign object to perceive a contact on it? Turvey had

his subjects swing an object behind a blinder and sensuously represent its length [32]; accordingly, they

guessed the right length (dynamic touch). By his experiments where inertia parameters of the held

object were changed as its tactile texture remains, it was revealed that our perception of length depends

only on the inertia parameters. Turvey’s experiments imply us that other animals can identify and know

inertia parameters of attached object.

2.3.3 Kinematic adaptation: brain scientific view

We can imagine and control the invisible edge of a worn hat [22]. Kinematic body representation in

brain is often called “body schema” or “body image” [33, 34]. They represent position and attitude, or

occupied area of each body part, which are updated according to body motion [35]. These representation

adapt to body changes caused by growth or injury.

It is known the kinematic body representation quickly adapts to the body change. Amputees some-

times feel the existence of their amputated limbs by itch or ache. This phenomenon called “phantom

limbs” seems because the body representation corresponding with amputated part still remains after the

body changes [36, 37]. This phenomenon is not only reported by patients but suggested to be a problem

in brain; Ramachandran and Rogers-Ramachandran [38] treated phantom limbs through several minutes

trial using a mirror box; and they also showed that the treatment changed the body representation in

brain. We note the body representation can adapt quickly because of sensory feedback.

2.3.4 Kinematic adaptation: cognitive scientific view

How do animals quickly adapt their body representation? If an agent knows and uses spatial information

in the environment as reference information, the agent can obtain spatial information of its body—

sensory-motor coordination. Conversely, if an agent knows and uses spatial information of its body, as

reference information, the agent can obtain spatial information in the environment. That is, spatial

cognition of body and that of environment are mutually dependent and cooperated.

The body schema is a representation which binds visual, tactile, and proprioceptive senses [39].
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Because this binding is based on somatic (tactile and proprioceptive) sense, Maravita et al. [40, 41] said

it is organized with in “peripersonal space” [42]. Grounding on experiments of adaptation of spatial

recognition as we wear a prism or glasses on our eyes, Sekiyama et al. [43] said that an agent can stably

recognize space around its body owing to the body schema which binds spatial sensory informations.

Now, we can say calculation during the kinematic adaptation of the body representation is a problem

associated with identification of spatial information from time-series multi-sensory information. For the

adaptation, reference information is necessary, whose identity ensured among multi-sensory information.

Here, we assume an agent actively invokes an event; if the agent observes the event in each sensory input,

it can ensure the identity of the input information, and use it as the reference. We believe that animals

also use self-derived information as the reference, and they adapt their sensory-motor coordination.

Mirror-image recognition is an example where an agent extracts and exploits self-derived information

in vision. Although chimpanzees initially get frightened at mirrors, they gradually understand the func-

tionality of mirror [44]. This mirror-image recognition occurs not only in apes [45] but also dolphins [46]

or elephants [47]. We can say that the treatment of phantom limbs [38] exploited the mirror-image

recognition, too.

How do animals extract self-derived information? Rochat’s experiments in human infants [48] are

suggestive for the solution. In his experiments, subject’s body was captured by video camera, and the

captured moving images were projected onto a screen in front of the subject. As the result, his subjects

predominately gazed to the projected images; moreover, they did to the tesseral images which shuffled

the original images. Rochat also showed this gaze did not occur when he operated temporal delay on

the moving images. Rochat’s results indicate infants extract self-derived information using temporal

information as a clue even from distorted visual images which have no physical connection with their

body. Recently, there are researches tackling how temporal delay on sensory information effects our

brain (e.g. [49]).

It is natural to use a temporal clue under uncertainty of spatial information. We often call a prop-

erty “motion contingency”, where information changes time-adjacently to active motion/behavior. We

suppose that animals exploit the motion contingency, detect a reference information from multi-sensory

input, and adapt a sensory-motor coordination—kinematic body representation. To deliver the sustain-

able coordination method, it seems better way to use contingency and detect a reference information;

it can work as a filter which weeds out irrelevant information for sensory-motor coordination.

3 Proposed method for sustainable coordination

If sensory-motor coordination is stationary for a long time, an agent should identify it only once.

Conventional robotic system has been assumed not to change in its working time, and have used pseudo-

inverse matrix, robust estimation, or Kalman filters to identify and initialize parameters which limit

and control the coordination. However, these are basically unsustainable methods if adopting them in

direct way.
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Methods based on the pseudo-inverse matrix and the robust estimation take more memories and

calculation time corresponding to the number of input data because they require appropriate sampling

of the data; i.e. they are not real-time. Methods based on Kalman filters have difficulty to design

appropriate covariance matrix of noise, and tend to make its convergence worse when many parameters

should be identified. We can say these methods are not sustainable because they can not automat-

ically calculate reliability of the identification nor determine allowable limit of the error of identified

coordination; reluctantly, the designers choose to decide the end of identification by themselves.

If changes of body propoerty often occur because of tool holding, object attachment, or injury (fail-

ure), an agent should sustainably adapt sensory-motor coordination in its working time. A method we

show in Sec. 3.1 identifies parameters from steadily input data, calculates reliability of the identification

in an indirect way, and continues and finishes data sampling for identification according to the reliability.

Its computation is easy and optimal as far as the least square error, which takes constant space and

time complexities and derives allowable error simultaneously with the identification of parameters.

3.1 Identification of sensory-motor coordination and its allowable error

Here we assume spatial sensory-motor coordination can be linearized using parameters. Using data

input at a given time At (M×N matrix) and the parameters x (N-dimensional vector), we define the

equation of a sensory-motor coordination as,

Atx = 0. (1)

If x is derived by identification, its squared error st is,

st = || At x ||2. (2)

An agent can decide to renew x by setting a threshold for st as allowable error; i.e. with the threshold

σ, x is to be renewed if st > σ. In this subsection, we show how to automatically identify x and σ. Our

method is lightweight and takes constant complexities; therefore, it also suitable for observation of the

error, which should be done at all times.

Mean of square error St among n samples of data which is already input at a given time can be

represented as,

St =
1
n

∑
t

st

=
1
n

∑
t

xTAT
t Atx

= xT

(
1
n

∑
t

AT
t At

)
x

= xT Ct x. (3)

Note that Ct is the variance-covariance matrix for the input data with the mean 0. We formulate
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parameter identification as a derivation problem of x which minimize St, where x is defined as,

x = argmin( St ). (4)

If we see St is a function of x, St is extremal with x which minimizes mean square error St. That

is, partial differential of St by x,

∂St

∂x
= 2 Ct x (5)

should be 0. It means equation,

Ct x = 0 (6)

should be solved for identification.

Because of Eq. (6), x is a base vector of null-space of Ct. Now we define n(Ct ) as the dimension of

nullspace of Ct. If and only if n(Ct ) = 1, identified x is the stable solution. Note that eventual x is

derived by normalization with other constraint condition because x has arbitrariness of multiplication

by scalars.

However, it is a hard problem to determine whether n(Ct ) = 1 from real data input. We show how

to obtain a unit vector minimizing St. Here we assume the singular value decomposition of Ct is given as

Ct = Ut StVT
t . St is a diagonal matrix called singular matrix whose elements are λ1, λ2, ..., λN, (λ1 ≥

λ2 ≥ ... ≥ λN ≥ 0 ). Because Ct is diagonal, Ut and Vt are under relation Ut = Vt. We define i-th

row of Vt as vi and substitute them into Eq. (3), then,

St = xT Vt St VT
t x

=
(
VT

t x
)T

St

(
VT

t x
)
, (7)

where Vt
T x means rotation of vector because the right singular matrix Vt is a orthonormal matrix.

Here we represent a unit vector x to be identified as a linear combination of vi, i.e. with coefficient

vector a as,

x = Vt a, (8)

under aTa = 1. (9)

Substituting this equation to Eq. (7), St becomes as,

St = aT St a. (10)

With a undetermined multiplier k, Eq. (10) can be represented as,

St = aT St a + k
(
1 − aTa,

)
. (11)

The partial differential of this equation by a is as,

∂St

∂a
= 2( St − k E )a, (12)
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where the unit matrix E = [ e1, ..., eN ]. Because St is diagonal, k = λi and a = ei are necessary to have

Eq. (12) be 0; i.e. St = λi at extremal. Therefore, the minimal St is λN and then x = vN (unit vector).

In other words, the column vector vN of right singular matrix corresponding to minimal singular value

λN of variance-covariance matrix Ct is the directional vector which minimize mean square error St, and

the minimal error equals to λN.

Obtained vN is to be scaled by other constraint condition as x = a vN with a coefficient a. Now

Eq. (7) is transformed as,

St =
(
VT a vN

)T
S
(
VT a vN

)
= a2λN. (13)

Finally, the mean squared error is estimated as St = a2λN in the identified coordination.

As discussed above, we can define the reliability of parameter identification by (a) how much λN

is close to 0, (b) how smaller λN is than λN−1, and (c) how much vN satisfies constraint conditions.

Meanwhile, if the coefficient a normalizing obtained vN is determined, a robot can estimate the mean

square error is a2λN under obtained x, which is a reference to determine the threshold σ.

Our method has features listed below:

• real-time:

C is fixed size, and computation time for its singular decomposition is estimated under a constant

value;

• numerically stable:

Because C is a variance-covariance matrix of input data whose mean is tentatively set 0, it is hard

to include numerical error;

• easy to check termination condition:

reliability of identification is easy validated using singular values as criterion;

• easy to check starting condition:

The threshold is automatically derived from parameter identification as the mean square error;

• incoherent to other identification precesses:

Renewing C at the beginning of each identification makes the calculation incoherent to the previous

identification; and,

• optimal in principle:

Identified parameters are optimal as far as it minimizes the mean square error.

3.2 Constraint condition for identification including rotation matrix

When we linearize a spatial sensory-motor coordination such as Eq. (1), the parameters to be identified

often include rotation matrix R, which represents difference of attitude between two coordinate systems.
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We define R as,

R =
[

γ1 γ2 γ3

]
. (14)

Here, we assume parameters to be identified as,

x =
[

γ1
T γ2

T γ3
T
]T

, (15)

and parameter vector obtained as a result of the method in Sec. 3.1 at each data input as x̂ =[
x̂1

T x̂2
T x̂3

T
]T

. We show in this subsection a method to determine whether x̂1, x̂2 and x̂3

are elements of rotation matrix.

For the determination, we define a matrix X̂ whose elements are x̂1, x̂2 and x̂3 and calculate

the rotation matrix R̂ which are mostly approximate to X̂. Our derivation method applies Challis’s

method [50]. If x̂1, x̂2 and x̂3 are elements of R̂, with e1, e2 and e3 which are elements of the unit

matrix E, we can represent the relationship among those values as,

R̂Tx̂i = ei. (16)

Accordingly, square error SR is as,

SR =
3∑

i=1

|| R̂Tx̂i − ei ||2

=
3∑

i=1

(
x̂T

i R̂ − eT
i

)(
R̂Tx̂i − ei

)
=

3∑
i=1

(
x̂T

i R̂ R̂Tx̂i − eT
i R̂Tx̂i − x̂T

i R̂ ei + eT
i ei

)
=

3∑
i=1

(
x̂T

i x̂i

)
− 2

3∑
i=1

(
eT

i R̂Tx̂i

)
+

3∑
i=1

(
eT

i ei

)
. (17)

In Eq. (17), the second term of right-hand side 2
∑3

i=1 eT
i R̂Tx̂i should be maximal to minimize SR

because the first and third terms are constant.

We transform the second term of right-hand side of Eq. (17) as,

3∑
i=1

eT
i R̂Tx̂i =

3∑
i=1

trace
(
R̂ eix̂

T
i

)
= trace

(
R̂

3∑
i=1

eix̂
T
i

)
= trace

(
R̂ X̂T

)
. (18)

Here, we also assume the singular value decomposition X̂ = USVT is obtained, and substitute it

into Eq. (18); then,

trace
(
R̂ X̂T

)
= trace

(
R̂VSUT

)
= trace

(
UT R̂VS

)
= trace

{(
UT R̂V

)
S
}

. (19)
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We can say from Eq. (19), only diagonal section of UT R̂V contributes to Eq. (18) because S is

diagonal whose elements are all positive. Here U, R̂ and V are all orthonormal matrices; therefore

Eq. (18) becomes maximal when UT R̂V = E. As discussion above, we can use R̂ = UVT using

the singular decomposition of obtained X̂ as the rotation matrix. Due to discussion above, we should

use R̂ = UVT as the rotation matrix which is mostly approximate to the identified X̂ with the least

square error.

Next, we show a way to derive a coefficient for normalization a exploiting approximated R̂. We

define elements of R̂ as,

R̂ =
[

γ̂1 γ̂2 γ̂3

]
. (20)

With a vector γ̂ =
[

γ̂1
T γ̂2

T γ̂3
T
]T

, a is obtained as,

a =

(
êTx̂

)
(

x̂Tx̂
) , (21)

which minimizes square error. We can calculate Sum of Square Difference (SSD) for each element of

aR̂TX̂−E, and regard it as closeness between the approximated R̂ and X̂. If this SSD is enough close

to 0, it can be determined to satisfy the constraint condition of solution.

3.3 Visual body detection and its binding to body motion based on motion

contingency

visual-motor coordination changes as the body changes because of tool holding, object attachment, or

injury. To adapt to the changed coordination, it is necessary to detect the body in view. A robot should

do it without preliminary knowledge because unfortunately we can not design and model all case of the

changes.

We human can easily detect actively “controllable” objects (self-body, worn clothes or held tool)

even when a lot of irrelevant objects are in view. We can do it even if the view is reflected or refracted,

or even if the objects are not physically connected to the body [48]. Moreover, we can also find what

motion controls the object. Even from infant, we detect a mobile tied to the body as well as the body

itself [51]. Detection of self-body in view seems fundamental not only for robot but for our cognitive

functions.

Several methods were proposed according to the capability of self-body detection. Yoshikawa [4]

showed a method to leave image area invariant to motion. However, he did not include a way to bind

the area to what motion causes it, nor his robot reuse the identification for motion generation. To

address this binding problem, Fitzpatrick et al. [7] proposed a method using correlation between link

motion and optical flow (unfortunately, they did not give their technical detail).

A method of Natale et al. [9] exploited periodic body motion. Our previously proposed method [2]

focused on linear time-invariant relationship between coordinates of a body part and a object fixed to
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the body part, and used the canonical correlation. These methods can actively detect a pair of body

motion and its attached object. However, the method of Natale et al. takes enough time to determine

the period of motion and restricts the robot motion to periodic one; meanwhile, our previous method

takes less time but restricts the motion to planar one to calculate canonical correlation.

To compensate the previous methods, we believe it is required to support non-linear transformation

such as refraction, reflection and perspective. In this subsection, we show a method satisfying the

requirement using easy and fast but robust criterion.

3.3.1 Contingency detection with motion coincidence criterion

We assume a robot and its camera are stationary in the environment, and it can move only its manip-

ulator. The environment includes objects with various motion, which are to be captured by the robot’s

camera. The robot should detect its body part in the view.

The body is a collection of particles. Here we define a point of particle in the 3D head coordinate

system as r, and the point in the 2D camera coordinate system as x. With a function f , which is

derived by the camera parameters and the environment, x can be represented as,

x = f ( r ). (22)

We denote a point on “controllable” object p by rp, sensor vector of an actuator b (e.g. 3D coordi-

nates of body part, joint torque, or muscle tension) by ab. The relationship between ab and rp can be

represented with a function g as,

rp = g ( ab ). (23)

g is kinematics, which is usually non-linear if ab is joint angles; meanwhile, g is linear if ab is the position

of a body part and p is attached to the body part. If both f and g were linear, the “controllable” object

could be identified by the canonical correlation [2]. However, f often includes refraction, reflection or

perspective depending on the environment; i.e. f and g are potentially non-linear and hard to calculate

correlation.

Here we assume f and g are time-differentiable at rp and ab respectively, and apply time-differentiation

to Eq. (22) and Eq. (23); then,

ẋp = Jf ( rp ) ṙp, (24)

ṙp = Jg( ab ) ȧb, (25)

where Jf and Jg are Jacobian matrices of f and g respectively; and a dot over variable indicates its

time-differentiation.

Due to Eq. (24) and Eq. (25), we can say independently from function form of f and g,

ȧb = 0 =⇒ ṙp = 0 =⇒ ẋp = 0. (26)
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With a body composed of multiple links, a robot can actively move them in multiple direction. If

we assume this universality of motion, Jf and Jg are full rank ( n(Jf ) = 0, n(Jg ) = 0 ) as is often

the case. Accepting this assumption, Eq. (26) could be equivalence relationship. That is, “generally,”

ȧb 6= 0 =⇒ ẋp 6= 0 stands. This equivalence means ȧb, ṙp and ẋp get 0 or get not 0 simultaneously

(motion coincidence).

Even when J is non-linear and unknown, Eq. (26) stands; i.e. only Eq. (26) is “generally” valid.

That is why the motion coincidence should be used as an invariant clue to detect body and attached

object. The motion coincidence clue indicates naive feeling that “there is no body movement in view

without any body motion;” the derivation of Eq. (26) corresponds to theoretical grounds for the naive

feeling.

3.3.2 Visual body detection with motion coincidence

The motion coincidence clue derived in Sec. 3.3.1 is applicable to actively detect self-body, worn clothes

and held tools. Here, we show a method to detect body parts in view using the motion coincidence in

Fig. 1.

We denote temporal change of i-th actuator as ȧi, temporal feature change in view of j-th object as

ṡj , and likelihood that j-th object is moved by i-th actuator as εij . The likelihood εij is incrementally

updated according to the equation as,

∆εij = ρa ( ȧi ) ∩ ρs ( ṡj ), (27)

where ρa and ρs are functions whose output is 1 if any element of input vector rises up from 0 during

duration τa and τ s respectively; otherwise, output is 0; and the symbol ∩ is a operator whose output is

1 if remaining time of left term is less than that of right term; otherwise, output is 0. Eq. (27) indicates

the likelihood increases if visual motion occurs immediately after body motion, in which causal order is

reflected.

The duration τ assures robustness over temporal difference of transmission depending on a type

of each sensor; i.e. τa and τs defines the performance of Eq. (27). We believe those values could be

given from other experiments or physiological literatures (e.g. [49]). As for human, they seem around

τ ' 300 [msec] [52].

The increment of εij is also usable as a trigger of motion which confirms if j-th object is truly

“controllable.” If εij is increased when ȧi = ȧi
t, the robot inputs ȧi

t into its motion generator, and

moves with perturbed ai
t and ȧi

t. This confirming motion accelerates the determination which element

of ȧi
t causes ṡi

t. Of course, εij is not necessary to change during the time before the confirming motion.

This detection method is more generalized and simpler than the method of Natale [8, 9] using periodic

motion.
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Repetitive confirmation

with perturbation

Arbitrary goal

Motion generation

Object-crowded
environment

Vision
sensor

Image sequence Actuation

AND operator

Image parts and their bound actuation

estimated as “body”

Motion detection

Non-zero detector

Figure 1: Schematic diagram of body detection based on motion coincidence. It consists of non-zero

detectors and AND-like operators. It iteratively discovers which pair in object and actuator has a causal

relationship of motion.
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3.4 Adaptation of kinematic hand-eye coordination without known marker

Spatial hand-eye coordination is necessary to plan and generate behaviors such as object avoidance,

reaching, or handling. That is, sustainable hand-eye coordination is a similar problem of hand-eye

calibration, where coordinate transformation is identified as initialization.

Conventional formulation assumes a given marker which has sorted and salient pattern attached

to the end-effector 1; and the given marker coordinate C
PH (homogeneous transformation matrix) is

obtained by sensors e.g. stereo camera. The transformation relationship among the camera coordinate

to the world coordinate W
CH (fixed and unknown), the hand coordinate to the world coordinate W

HH

(variable and known), and the given marker coordinate to the hand coordinate H
PH (fixed and unknown)

is as,

W
CH C

PH = W
HH H

PH, (28)

which is shown in Fig. 2-A. The conventional methods formulate the calibration as identification of

unknown variables by solving Eq. (28).

(A) Conventional formulation (B) Proposed formulation

( ) x ( )b

Figure 2: Conventional and proposed formulation of visual-motor coordination.

Eq. (28) has 12 DOF because each homogeneous transformation matrix has 6 DOF. Ideally, 12

equations which compare elements of left and right hand sides are obtained, and one measurement is

enough for identification. However, if we replace fixed and unknown matrices as A and B, and variable

and known matrices as X and Y, Eq. (28) can be represented as,

AX = YB. (29)

With normal matrix calculation, Eq. (29) is not solvable; i.e. existence of solution is not assured because

variables are wedged between unknown matrices. To assure the existence of solution by multiple mea-

surement, meanwhile, it is not apparent how to exploit X and Y samples obtained by each measurement
1Conventionally, calibration methods without a marker only assume the camera is mounted on the hand, and the

environment is stationary. Under this assumption, camera does not capture visual image of self-body.
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in the form of Eq. (29). Therefore, robust estimation has been often used [53, 54]. However, it takes a

lot of memory according to measurement times and its computation time is indeterminate; moreover,

there are still problems in assurance of solution existence, sampling method from the measurements and

termination condition of identification. That is why direct usage of conventional methods is not suitable

for sustainable coordination.

In conventional methods, C
PH is assumed to be given by measurement. To obtain C

PH from monoc-

ular/stereo camera or laser range finder, it is necessary to prepare a marker whose coordinate can be

uniquely determined. The methods finds the marker from camera captured images, and estimates the

marker coordinate to the camera coordinate. Note that the marker should have at least three dis-

tinguishing points for estimation. Unfortunately, in the case of body changes caused by attachment

of unexpected object, we can not generally assume the marker or pattern are given; i.e. we need a

“marker-free” method for sustainable coordination.

Here, we implement sustainable visual-motor coordination method exploiting body detection method

of Sec. 3.3 and parameter identification method of Sec. 3.1. Owing to those methods, our coordination

method has preferable properties to its sustainability: less distinguishing point fixed in the hand coordi-

nate (at least 1 point), free motion during calculation, and adequate process beginning and termination

based on successive sensor input.

We define i-th point fixed in the hand coordinate as Hri (fixed and unknown) and Cri (variable and

known) in the hand coordinate and the camera coordinate respectively. Candidates of the point can be

detected in view by the method of Sec. 3.3. Now, the relationship between the hand coordinate and the

camera coordinate comes as,

[
W
CR W

C ro

] Cri

1

 =
[

W
HR W

Hro

] Hri

1

 , (30)

which is the same form as Eq. (28) (Fig. 2-B).

By replacing W
CR and Cri in Eq. (30) with,

W
CR =

[
W
Cγ1

W
Cγ2

W
Cγ3

]
, (31)

Cri =
[

Cxi
Cyi

Czi

]T
, (32)

the left side of Eq. (30) can be transformed as,

[
W
CR W

C ro

] Cri

1

 =
[

CxiE CyiE CziE E
] [

W
Cγ1

T W
Cγ2

T W
Cγ3

T W
C ro

T
]T

. (33)

With the transformed left side Eq. (33), we transform Eq. (30) so that unknown and known variables

get together respectively; then,[
CxiE CyiE CziE E −W

HR −W
Hro

] [
W
Cγ1

T W
Cγ2

T W
Cγ3

T W
C ro

T Hri
T 1

]T
= 0. (34)

Eq. (34) is the same form as Eq. (1), and its variance-covariance matrix updated by each measurement
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is,

Ct =
1
n

∑
t

AT
t At (35)

under At =
[

CxiE CyiE CziE E −W
HR −W

Hro

]
.

The parameters to be identified is,[
W
Cγ1

T W
Cγ2

T W
Cγ3

T W
C ro

T Hri
T 1

]T
. (36)

The reliability of identification is calculated as how close to 0 the minimal singular value λ16 of Ct is,

how smaller λ16 is than λ15, and how close to rotation matrix the matrix whose elements are W
Cγ1, W

Cγ2

and W
Cγ3 in obtained v16 (see Sec. 3.2). v16 is scaled and normalized so that its last element becomes 0.

Compared to conventional hand-eye calibration methods, our method is marker-free, more real-time,

easily decidable of convergence and enough accurate. Moreover, it can determine which body segment

has the distinguishing point in view thanks to the detection method of Sec. 3.3. That means our method

is easily applicable not only for hand-eye but body-eye calibration; i.e. visual-motor coordination.

Definitely, our method is usable for head-eye calibration, which is a subset of hand-eye calibration.

3.5 Adaptation of kinesthetia: inertia identification and tactile extension

Identification of the inertia parameters of held or adhered object is necessary to estimate a touch on

it [2]. Inertia identification is a field of robotics, and multiple methods have been proposed (see Sec. 2).

However, they are not suitable for sustainable coordination because of direct usages of pseudo-inverse

matrix, robust estimation or Kalman filter.

As is expected, motion equation is known to be linearizable with inertia parameters in the same

way as visual-motor coordination even when the body consists of multiple links [16]. This indicates our

sustainable coordination method of Sec. 3.1 can be applied to inertia identification. With our method,

a robot can automatically terminate the identification process and use the obtained parameters just

after the termination; e.g. touch estimation on the object whose inertia parameters are identified [2].

We note that our method is also applicable to identification of spatial alignment between kinesthetic

(force/torque) sensor coordinate and the hand coordinate; i.e. spatial calibration.

4 Experiments

4.1 Experimental setup

To validate our method, we built a robotic system. The robot has a 6-DOF (5-DOF is for arm, the other

is for gripper) robot arm “Katana” [55], a 6-axis force/torque sensor “Mini40 SI-80-4” [56] equipped in

the wrist, 2-DOF head “Biclops PT” [57], and two “Firefly MV” [58] for a stereo camera.

We adopted a Linux-2.6.17.3 PC with xenomai patch [59] for real-time sensor measurement, OpenCV [60]

and Integrated Performance Primitives (IPP) [61] for image processing, C++ for programming, and In-
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tel C++ Compiler for compilation. Any vision process was operated every 33 [msec] tuned to sampling

rate of the cameras.

4.2 Visual body detection with motion coincidence

We experiment visual body detection with motion coincidence, which is shown in Sec. 3.3. We do not

give the robot knowledges of any optical condition and kinematics of the arm, where the cameras are

not calibrated. The robot should instantly detect its body from the view including irrelevant objects

and noise.

We implement ȧi in Eq. (27) as the temporal change of encoder values of joints, and ṡj as the sum of

norm of optical flow within subimage j calculated by cvCalcOpticalFlowPyrLK() function in OpenCV.

Note that f and g are non-linear and not given to the robot.

The robot randomly and repeatedly moves its arm and detects its body in view. If εij is incremented

by Eq. (27), it interrupts motion generation, moves the arm to the posture at which εij was incremented,

and moves it again (confirmative motion).

A result is shown in Fig. 3 from the beginning of motion (0 [msec]) to the end of duration (300 [msec]).

Blue rectangles in the figure indicate optical flow is non-zero with in the area; and red ones do the area

detected as body, where
∑5

i=0 εij 6= 0.

At 0 [msec], visual motion of human—irrelevant object did not effect εij . This is because our method

uses only visual motion just after self-body motion. The finally obtained likelihood map was overlapped

on the visible area of the body.

Optical flow Likelihood Optical flow Likelihood

0 [msec]

33 [msec]

100 [msec]

133 [msec]

233 [msec]

266 [msec]

Figure 3: Temporal change of the resultant optical flow and likelihood maps indicating area of body. The

blue rectangles indicates the segment whose optical flow is non-zero. The red rectangles are discovered

as controllable segments in the image.
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Fig. 4 shows resultant ȧi and εij . The graph of ȧi begins right before the beginning of Fig. 3. The

values of encoder 0, 1, 3 and 4 simultaneously rise up from 0, and those of encoder 2 and 5 dose not

change (encoder 5 is stationary from -266 [msec]). ȧi properly reflects in the likelihood map
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Figure 4: Temporal change of the encoders’ output and resultant likelihood maps indicating area of

body. The red rectangles are discovered as controllable segments in the image.

Figure 5: Blend image of 15 likelihood maps obtained from 15 iterations of motions. The redder

rectangles means the segments stably discovered as controllable.

To verify the convergence of our method, we overlay likelihood maps obtained from 15 randomly

generated motions in Fig. 5. Areas which is stably detected as body are indicated redder. Our method

detected well in distinguishing points and tips of each links, where optical flow can be accurately

calculated.
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4.3 Kinematic hand-eye coordination without known marker

We experiment sustainable visual-motor coordination shown in Sec. 3.4. The world coordinate is set

at the base of the arm, and other coordinates (the hand coordinate and the camera coordinate) are

as shown in Fig. 6. From the beginning of experiment, the robot holds a rod-like object (file, which

is usally seen and used in our daily life) with around 0.3 [m] length; the robot moves its arm and file

randomly. We assume the stereo camera is calibrated and parallelized.

x

y

z

x

y

z

x

y
z

Figure 6: Experimental setup and definition of coordinate systems for sustainable hand-eye coordination.

We show the experimental processing flow in Fig. 7. Visual processing of the left images consists

of detection of corners as distinguishing points, tracking of the corners, and detection of corners on

body using our method of Sec. 3.3 with input of the tracking information and body motion information.

Exploiting right images, depth of those corners on body are calculated. The obtained 3D coordinates

of the corners on the body and the motion information are input into our method of Sec. 3.4.

Corner tracking

Left image

Body detection

Distance by stereo

Body motion

Coordination

Corner tracking

Right image

Figure 7: Information flow for experiment of hand-eye coordination.

The identification is calculated at every input, and its termination is determined when the minimal
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singular value (λ16) is less than 0.00005 and closeness of solution to rotation matrix (SSD) than 0.1 (see

Sec. 3.2). We set 100λ16 as the upper limit of error. The robot stops for 3 [sec] after identification, and

randomly moves again. The robot calculates the error of sensor data obtained at each step, and check

whether it is under the upper limit. Re-identification begins after 10 consecutive inputs which are over

the upper limit. For experiment, the experimenter moves the rod-like object held by the robot; i.e. the

hand coordinate changes; and moves the robot’s head; i.e. the camera coordinate changes.

Results are shown in Fig. 8. The upper half of each image indicates, starting from the left, the

image captured by the left camera, that by the right camera, and internal state. As the internal state,

current process (identification or observation) is shown. The lower half is external experimenter’s view.

In those images, blue circles indicate detected corners; green lines connecting corners do stereo-matched

pair with local image around each corner; and red circles in the left images do corners which is detected

to be the body. one of red circles changes to a red rectangle after the end of identification, which means

the identification using the corner completes its process at first of the others.

25 [sec] 27 [sec] 59 [sec]

76 [sec] 102 [sec]75 [sec]

114 [sec]113 [sec] 124 [sec]

Figure 8: Resultant sequence of experiment of hand-eye coordination.

From 25 [sec] to 27 [sec] in our experiment, the tip of the rod-like object held by the robot wasdetected

as the body. The identification converged by 59 [sec] and the process was switched to observation of
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the error. The rod-like object was moved furtively by the experimenter at 75 [sec], and the process was

changed to identification at 76 [sec]. The renewed identification converged by 102 [sec] and the process

was changed to observation again. The experimenter moved the robot head at 113 [sec]. Responding

to the change, the process was switched to identification again at 114 [sec]. The third identification

converged by 124 [sec] and the process was changed to observation again.

Fig. 9 shows the temporal change of identification reliability in its upper row, and the temporal

change of observation error in its lower row. Horizontal axis is time; Vertical axis of the top row is

singular values from λ13 to λ16; The second top is SSD to rotation matrix in range from 0 to 3.5; the

blue line in the bottom is 100λ16 using previously identified λ16; and the red line in the bottom is error

calculated by Eq. (2).
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Figure 9: Resultant internal values during hand-eye coordination.

In all identification process, minimal singular value λ16 was almost always close to 0; others increased

from 0; and SSD to rotation matrix converged to 0. These results indicate our method achieved iden-

tification stably. In all observation process, the error never transcended the automatically determined

limit before the experimenter moved the rod-like object and changed visual-motor coordination of the

robot. The transcending error lasted in several time, and the process switch to identification occurred.
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For reference, the parameters obtained in each identification process are,

W
CR =


−0.0498065 −0.998648 −0.0148783

0.170921 0.00615438 −0.985266

0.984025 −0.0516156 0.170383

 ,


−0.00316324 −0.999583 −0.0287144

0.143567 0.0279631 −0.989246

0.989636 −0.00725165 0.143418

 ,


0.00638279 −0.999756 0.0211358

0.0562159 −0.020744 −0.998203

0.998398 0.00755949 0.0560698

 ,

W
C ro =


0.114014

0.360626

−0.118095

 ,


0.119858

0.362371

−0.0912571

 ,


0.0691735

0.37749

−0.0511823

 ,

Hri =


0.287573

−0.0457856

0.307632

 ,


0.299869

−0.0494941

0.267815

 ,


0.29829

−0.0664128

0.234654

 [m].

We can say these values adequately reflected the spatial relationship shown in Fig. 6. Particularly, x

value of Hri was nearly 0.3 [m], which is the length of the rod-like object.

4.4 Kinesthetic-motor coordination and touch estimation

We experiment kinesthetic-motor coordination; i.e. inertia identification and touch estimation of held

object (see Sec. 2 and Sec. 3.5). Because the robot has a force/torque sensor in its wrist, we set a task

where it should identify inertia parameters of distal part from the wrist (including its held object), and

immediately after that, it should estimate touch on the part.

The experiment begins with the robot holding an object. The shape of the object is approximately

given, which is necessary to estimate touch in principle [2].

As for the experimental procedure, the robot moves the object, and identifies its inertia parameters.

If those parameters are identified, the robot makes the object touch another object. For demonstration,

a simple feedback rule is implemented, where the robot repetitively keeps touch if first touch is detected

by estimation.

Currently available force/torque sensor can not inevitably cancel fictitious force which is caused by

accelerated motion of the sensor itself. We carry out the experiment under low acceleration to ignore

its effect. Now we define the variance-covariance matrix updated by each measurement as,

Ct =
1
n

∑
At

T At (37)

under At =

 W
KRKf 0 g

0 −
[Kf ×

]
−Kτ

 ,
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where W
KR is the kinesthetic sensor coordinate to the world coordinate, Kf̂ and Kτ̂ are touch force/torque

in the kinesthetic sensor coordinate respectively, and g is gravity acceleration to the world coordinate.

The inertia parameters to be identified are defined as,[
1 / m K

TrT 1
]T

. (38)

Note that these formulation is a minor version of the method which Liu et al. proposed in [16].

Results in the case that a wire-mesh box is held are shown in Fig. 10. The left top of each figure

indicates internal view of the robot, where estimated points of touch are represented as red dots. We

show the reliability of identification in Fig. 11-(A), where the horizontal axis is time from the beginning

of the experiment and the vertical is singular values from λ2 to λ5. Resultant 3D coordinates of the

points where the robot estimated touch are in Fig. 11-(B), whose projection onto y-z plane is Fig. 11-(b).

The robot automatically determined that the identification finished at 6.6 [sec] because λ4 reached to

the threshold. Just after determination, it performed touching motion to another object (table). From

Fig. 11-(A), we can see that λ4 increased and converged while λ2 and λ3 decreased. This could be an

effect of object’s welter because of non-rigidness of the wire-mesh box. The identified parameters were,

m = 0.594409 [kg],

K
TrT =


0.0161846

−0.0214352

0.0923942

 [m].

The resultant touch points should be on a plane composing the table. However, the error up to

0.1 [m] occurred in the estimated value (see Fig. 11-(B)). We suppose it is because of modelling error of

shape and non-rigidness.

5 Discussions

Our results obtained in Sec. 4 indicate computational lightness of our method, which could be imple-

mented even on a microcomputer with small area of memories and low power. Of course, singular value

decomposition is costly. Fortunately, matrices to which applied it in our method are small and fixed-size;

i.e. we are able to assume an upper limit of computational cost.

In our method, several thresholds should be given as well as conventional methods. However, we

suppose these thresholds can be automatically determined according to the scale of input or to necessary

precision; e.g. the constraint of rotation matrix is always normalized and we can easily decide its

threshold.

To implement the sustainable sensory-motor coordination, we assumed its linearity. There are still

problems if we extend our method in case of non-linear coordination; could it work stably and rapidly?

We are afraid that such a extension will spoils the features of our method.
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Figure 10: Experiment of kinesthetic coordination and tactile extension of grasped box (tool).
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Meanwhile, it would be possible to extend our method to include motion generation which accelerate

its convergence. For instance, orthogonal complement of current variance-covariance matrix seems

usable, which could be adopted more easily than a method using mutual information like [18].

Our method of visual-motor coordination sufficiently works only using one tracked point. How can

we exploit other points to get the precision better? How can we include tracking by visual feedback

without preliminary knowledge? How can it cooperate with camera calibration? These are also problems

to enhance our method.

Despite that we ignored accelerated motion in our experiment of inertia identification, it ended up

effecting the results. We think a force/torque sensor should be stationary (e.g. placed at the base of

arm), if we include accelerated motion in our method. In case that object to be identified is non-rigid,

our method can identify inertia parameters approximately. We believe such approximated parameters

are usable in our living space.

How can we support the case that kinematics of arm is not given? We are expecting a clue to

solve it in ways of animals to obtain body representation. At least, our sensory-motor coordination

method in this paper corresponds to simple acquirement of body representation; i.e. we can say it is a

computational model of primal body representation. Such a computational modeling will play a crucial

role to reveal other cognitive processes of animals.

Identification of coordination potentially involves errors in modeling, estimation, and assumption,

which are inevitable in real world. Motion generation should compensate those errors while it subserves

identification. Our next goal is cooperation of the identification and the motion generation.

6 Conclusion

Sensory-motor coordination, which is necessary for us to behave consistently in real world, is inconstant

because of the change of body when we wear or hold foreign objects such as glasses or tools. This

inconstancy makes robots need to have abilities of sustainable coordination. Based on this concept, we

proposed a method to achieve sustainable coordination assuming simple and linear coordination. The

core idea of our method was to exploit a criterion (the dimension of null-space) which does not directly

use error, and to estimate the allowable error of sensory-motor coordination.

We also gave its concrete implementation in visual-motor coordination (hand-eye calibration) and

in kinesthetic-motor coordination (inertia identification and touch estimation). Particularly, our imple-

mentation of visual-motor coordination endowed a robot marker-free hand-eye calibration under view

with irrelevant objects.

Our experiments showed our method is easily convergent and enough accurate. That is, our method

is easily applicable to a robotic system. We hope our method is a seed to expand the field where robots

autonomously work. We also hope this paper plays a key role to computationally model and understand

cognitive functions often seen in animals.
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