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Abstract

The development and expression of many higher level cognitive functions, such as imitation,

spatial perception, and tool-use relies on a multi-modal representation of the body known as the

body schema. Although many studies support the hypothesis that the body schema is adaptive and

alterable throughout ontogenetic development, the mechanisms underlying its plasticity have yet to

be clarified. Here we argue that the temporal integration of multisensory information is a plausible

candidate mechanism to explain how manipulated objects (e.g. tools) can become incorporated into

the body schema. To demonstrate the validity of our idea, we introduce a model of body schema

adaptation instantiated in a small-sized, table-top, tool-using humanoid. The robot’s task is to

learn to reach for and touch a visually salient distant object, first with its “bare” hand, and then—

using the acquired know-how—with a reach-extending tool (a stick). Our experimental results show

that in order to successfully causally relate and integrate vision, touch and proprioception, and

to learn to use the tool, timing is of crucial relevance. On a more general note, this study also

suggests that synthetic modeling might not only be a valid avenue towards getting a better grasp on

results provided by neuropsychology and neurophysiology, but also a powerful approach for building

advanced tool-using robots.
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1 Introduction

In humans and other primates, many fundamental abilities depend on the availability of an internal

(e.g. neural) representation of the body’s current posture and spatial extension. Humans, for instance,

imitate other people by projecting visually observed behaviors onto their own motor capabilities and

action possibilities. This non-conscious mapping between visual perception and action, which is also

known as “transferability” [1], relies on the integration of multi-modal sensory information (e.g. visual,

tactile, and proprioceptive, that is, information originating from the body itself) into a common body-

centered representation. Interestingly, such representation is not limited to the individual body parts,

but can be shown to include the body’s peripersonal space, that is, the space immediately surrounding
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the body [2] pointing to its crucial role for spatial perception. This is plausible if one considers that in

order to guide movements through space the brain must constantly monitor limb positions and make

predictions about their future positions in relation to surrounding objects that can be reached (most of

the involved bodily operations remain outside conscious attention).

Another important instance of how the body representation dynamically extends and incorporates

pieces of the environment that “normally” would not be considered part of it is tool-use (e.g. [3]). Tool-

use is the ability possessed by humans and other animals (e.g. birds, horses, and chimpanzees) to use

different tools to manipulate objects, and hence “move beyond” the limits set on their action space

by the length of their limbs or the type of their end-effectors. Neurophysiological evidence indicates

that after repeatedly using a tool, changes in the body representation (of humans and trained monkeys)

occur, and over time the tool is perceived as if being an integral part of the body. The phenomenon

describing the extension of the body representation to include non-corporeal objects in the peripersonal

space, such as tools or prosthetic devices, has been extensively reported in the literature [4, 5, 6, 7], and

lies also at the center of this article.

Two distinct and complementary definitions of “body representation” exist (see [8] and [9] for critical

reviews): (a) the body schema, that is, a non-conscious neural map of the spatial relations among the

parts of the body which integrates multi-modal sensory information (e.g. visual, somatosensory, tactile,

and proprioceptive) [10, 11, 12]; and (b) the body image, a consciously manipulable version of the body

schema [13] which relates to the phenomenal experience of one’s own body (self-awareness). The latter

representation of the body is concerned with a more conceptual understanding of the body in general [14]

and with out-of-body experiences, i.e. experiences during which a person seems awake and sees her

body and the world from a location outside her physical body [15]. It is still unclear how to bridge the

explanatory gap between these two concepts, but some attempts are currently under way (e.g. [9]). In

this paper, we tackle the problem by looking at it through the lens of developmental robotics [16]. Our

methodology is double-pronged and synthetic: we first extract design principles or mechanisms from

neurophysiological and neuropsychological findings, and then instantiate those principles in a behaving

artificial system. Although the focus of this article is on the body schema, no apparent conceptual

obstacles exist to integrating body image in our framework. In other words, we suggest that synthetic

modeling might provide a viable solution to the problem of creating a coherent and consistent theory

to connect the two notions of body representation.

In what follows, we first briefly describe the notion of body schema by drawing upon findings from

neurophysiology, psychology, and robotics. Our core assumption is that the body schema plays a

pivotal role for robotic systems intended to interact with human beings or to display high-level cognitive

functionalities. From the perspective of our synthetic approach, the study of tool-use by means of robots

has two distinct advantages: (a) tool-use extends the robot’s manipulatory abilities and thus improves its

interaction with the surrounding world (e.g. humans); (b) the effects of tool-use adaptation on any kind

of internal representation are easily accessible and have a clearly visible outcome which can be detected,

studied, and hopefully understood. In Section 3, we outline a novel biologically inspired model of body
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schema adaptation, which we instantiate in a real robot that has to learn to use a simple tool in order

to extend its reach. We proceed by exposing our results and discussing them in the light of how our

model might be helpful to understand how tools are actually incorporated into the body representation

of an actor which manipulates and interacts with its local environment. This study describes a synthetic

model for physiology and presents a novel approach towards tool-use in robots, and thus might be of

value for physiologists, psychologists, and roboticists.

2 Perspectives on the body schema

In this section, we present a view on the body schema which hinges on studies from the areas of

neurophysiology and neuropsychology, and briefly survey some previous research applying the concept

of body schema to robots.

2.1 Phantom limbs

The term body schema was initially introduced by Head and Holmes [10] to describe (a) the mapping

of proprioception and efference copies (that is, copies of motor commands) onto body posture and

movements, and (b) the mapping from tactile sensation to its originating location on the body surface.

We call this original definition the “geometric body schema.” The concept of body schema—and the

one of body image, for that matter—have been substantially enriched by the discovery of the phantom

limb phenomenon [17]. This phenomenon can be observed in amputees who have lost their limbs either

due to accident or to disease, and who find themselves feeling somatic sensations (such as pain, tickle, or

itch) originating from their amputated (that is, inexistent) limbs (hence the name phantom limbs)[18].

Although it would help clarify the debate concerning the question of whether the body schema is

innate or acquired, no conclusive evidence exists showing that phantom limbs also occur in the case of

congenitally missing limbs—the literature on the issue is ambiguous and controversial [9].

2.2 Plasticity

Recent studies shed new light on the plasticity of the body schema. Phantom limbs, for instance, can

be treated with mirrors which give amputees relief from the disturbing presence of the lost limb [19].

This finding demonstrates that the body schema is alterable even in adults, and treated patients can

learn to “rationally” accept the conflict between visual and “phantom” somatosensory information and

to adjust to the new body. Based on the results of these studies, it is probably correct to assume

that the body schema is plastic and alterable, constantly updated by sensory feedback (e.g. [7]). More

directly relevant to our study is a recent report on the plasticity of a class of bimodal neurons in the

monkey’s intraparietal cortex which typically respond to somatosensory and visual stimulation from the

monkey’s hand. Surprisingly, after the monkey is trained to retrieve distant objects using a rake, the

visual receptive fields of the bimodal neurons expand to include the entire length of the tool used, and
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the mere sight of the tip of the rake is sufficient to activate the bimodal neurons [5]. This result not

only confirms the hypothesis that the body schema is adaptive, but it also shows that it can actually

extend to incorporate tools and other inanimate objects.
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Figure 1: Schematic illustration of phenomenon of body image extension. If taps and strokes on the

table and on the real hand occur simultaneously, then the subject feels the table as being part of her

body—she is misled to believe that her hand has actually extended.

Some other remarkable instances of body schema and body image extension are described in the

literature. A representative example is shown in Fig.1 (see [20]). In this particular experiment, a

subject sits at a table while hiding both hands. The experimenter simultaneously taps and strikes the

subject’s hand and an unreachable point on the table. Astonishingly, after a minute or so, the subject

starts feeling as if the stimuli emanates from the table—despite the table being an inanimate object!

This verbally reported extension of the body to include the table is a striking example of (conscious)

“body image extension” (we are not aware of any work addressing this issue, but we hypothesize that

it would probably require more time for the body schema to extend given the typical time constants

of neural systems). The study provides yet more evidence that body representations such as the body

image or the body schema are plastic and easily alterable—even in adults. Note that despite the proven

plasticity of both representations, their underlying mechanisms also exhibit stability, in the sense that

brain regions seem to be permanently committed to consciously represent body parts [4].

The most plausible implication from all these studies appears to be that the body schema is open to

modifications and alterations throughout lifetime (modifications that can occur on small time scales).

Indeed, during ontogenetic development we experience a continuous and incessant deluge of multi-

sensory information, and the body schema might be constantly affected by the neural integration,

re-organization, and storage of exteroceptive and proprioceptive sensory feedback.

2.3 Robots

It is interesting to observe that the concept of body schema is closely related to the modeling techniques

adopted in traditional robotics where control strategies are often concerned with the establishment of

various coordinate systems to represent positions and orientations, and models of forward or inverse

mappings among such coordinate systems, e.g. mappings from a body-centered system (e.g. joint coor-
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dinates) to a world-centered system [21]. In analogy to the geometric body schema, such conventional

kinematic and kinetic models are inalterable (static) and are based on a representation of the robot’s

body in a cartesian coordinate system. In robotics, geometric transformations from one space to another

are not only used for planning trajectories but also for integrating different kinds of sensory information,

e.g. visual and proprioceptive [22], visual and auditory [23], or visuomotor information [24]. Typically,

spatial information is extracted from camera images, or from the intensity or the phase difference be-

tween auditory signals, and then mapped onto a cartesian coordinate frame attached to the body of the

robot. Similarly, it is possible to convert proprioceptive information. The cartesian coordinate system

provides a common and uniform ground on which to combine the sampled sensory information.

By contrast to traditional approaches and more in tune with current adaptive techniques to robot

control [25, 26] or motor control [27, 28], recent research has attempted to endow robots with some kind

of adaptive body schema. Yoshikawa et al. [29], for instance, proposed an adaptive body representa-

tion system which starting from uninterpreted (raw) visual data first learns to identify spatial regions

occupied by the robot’s body parts and then builds up a map of the body. Stoytchev [30] proposed a

model of body schema extension which, based on the premise that bodily changes can be detected, can

autonomously device a strategy to adapt the robot’s kinematic controller to such changes. Moreover,

given that the robot “knows” which object is a tool (tools can be conceptualized as bodily changes), the

same author also introduced an approach to represent and learn tool affordances grounded in the robot’s

behavioral repertoire [31]. Another related piece of work is the one by Metta and Fitzpatrick [32] who

programmed a robot to poke objects with its arm (without using a tool) and through estimations of the

induced optic-flow to discover properties of objects such as rollability.

Our approach differs from previous modeling efforts. The work by Yoshikawa et al., for instance,

addresses the question of how to acquire a body representation, and not how such a representation can

be adjusted to incorporate external objects. The work by Stoytchev discusses kinematic changes of the

body with regard to tool-use, but not how such bodily alterations can be detected. Kinematic changes of

the body involve spatial transformations and represent therefore a problem amenable to mathematical

solution. We conjecture that the real problem might actually be how to detect the alterations based

on the sensory data. Metta and Fitzpatrick, finally, focused on the extraction of information structure

from multi-modal sensation but neglected adaptation and tool-use. The work presented in this paper

show a novel different stance on tool-use. We suggest that tool-use depends on the coherent unification

of spatial and temporal aspects, in particular, temporal integration of multisensory information. Our

model integrates and complements some of the ideas contained in previous work: kinematic changes are

indeed required when learning to use a tool, and information about time is crucial for tool detection,

identification and use. We introduce our model in the following section.
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3 Adaptive model of body schema

As already stated before, the body schema is not a static entity but changes plastically. In this section,

we expose a mechanistic model of body schema adaptation which relies on the temporal integration of

multisensory information.

3.1 Timing-based model

Our model is based on three main assumptions. The first assumption is that visual and tactile in-

formation are integrated in time and space. By “integration in space” we mean a mapping between

the coordinate systems of each sensory modality without the need to postulate a common intermediate

frame of reference. This assumption simplifies our model and increases its affinity to temporal inte-

gration. Touch occurs when the robot moves its arm so as to approach a target object and eventually

contacts the object with its hand. When executing this movement sequence, the robot first obtains

visual information while its hand is approaching the target, and then tactile information upon contact

with the target object. Visual and tactile sensations are therefore causally related. Moving the hand

to approach a target represents the cause, and the tactile sensation (contact) the corresponding effect.

This also means that by associating visual information (available during the approach phase) with tactile

information (resulting from the contact with the target object), it is possible to predict the cause of a

possible action. Tactile and visual information are also spatially integrated: visual “contact” (that is,

overlap of hand and target object) and tactile contact co-occur on the same point on the body. The two

modalities are thus integrated in time and space and unified as one modality by the event “contact.”

Our second assumption is that it is possible to store the integrated sensory information in an asso-

ciative memory so that if one modality is active, the other one is co-activated. In this sense, two spatial

locations from which visual and tactile “contact” information originate are considered to be the same

location, only if the available information on the event “contact” is compatible with the one retrieved

from the associative memory. In what follows, such co-occurrence of spatial and temporal information

is called “rationalization.” The design principle used relates to the concept of causality: the body

representation of the actor (trained monkey, human subject, or robot) extends only if the temporal-

causal relationship among the multiple sensory modalities matches a relationship which the actor has

previously experienced and which can be retrieved from memory. Our last assumption is that the robot

possesses already an a priori kinematic knowledge of its body after learning. This assumption does not

exclude ontogenetic development. The focus is on how the robot detects a tool as a modification of its

body and how it adapts to such a modification.

3.2 Tool-use model with plastic body schema

We augment our timing-based model of body schema adaptation to include adaptive tool-use. The

proposed strategy enables a robot to reach and touch a distant target with a tool by treating the tool as
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it were the hand. Note that knowledge about the tool is a priori unavailable; the robot autonomously

incorporates the tool in its body schema and learns to use it.

The proposed strategy is composed of four steps:

1. Temporal integration: The robot reaches for and touches an object with its “bare” hand,

and learns to temporally associate and integrate visual and tactile information. The learned

relationship is stored in an associative memory (Fig. 2).

2. After integration: If tactile information is obtained after learning to temporally integrate

sensory information, then the robot recalls the associated visual information by retrieving it from

memory (Fig. 3).

3. Rationalization: If the recalled visual information is consistent with the actually obtained

visual information, then the location of visual “contact” is considered as the location on the hand

from which the tactile sensation originated.

4. Learning of controller: If visual “contact” occurs not on the robot’s hand but on the tool,

then the robot is not able to adequately use the tool with the current hand trajectory/position

controller. This induces the system to learn a new kinematic controller for the tool.

Reach and touch

Trajectory
planner

Controller

Body Environment
µ[t]

Associative memory
(temporal integration)

Tactile sensation
sT [t] Target position

Hand position

rV
t [0]

rV
h [t]

µ[t]

Efference copy

Actions: reach and touch

Figure 2: Information flow during learning. Temporal integration of visual and tactile information.

The detailed information flow during the temporal integration phase is depicted in Fig. 2. Henceforth

we refer to r as a vector expressed in a cartesian coordinate frame attached to the body of the robot.

The superscript V denotes visually obtained information and the superscript T tactile information. To

reach the target with its hand, the robot needs to execute the following steps: First the robot generates

spatial and kinematic trajectories of its hand r̃V [t] starting from the hand’s current position rV
h [0] to
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the target location rV
t [0]; the trajectories are then internally simulated and an executable trajectory is

selected using the hand kinematic controller; the robot then actually moves the hand along the internally

simulated trajectory θ[t] (converted from r̃V [t] by the controller), and eventually reaches and touches

the target. The temporal visual information rV
h [t] and tactile pattern sT [t] obtained are fed to the

associative memory which acts as a temporal integrator.

Trajectory
planner

Controller

Body Environmentµ[t]

Accidental touch

sT [t] Target position

r~V
t [0]

Tip position

r~V
h [t]

Recalled visual information

rV
t [0]

rV
s [t]

Correlated calculation

µ[t]

Efference copy

Correlation

Learning of kinematic controller

Associative memory
(temporal integration)

Tactile sensation

-

Figure 3: Information flow after learning. Visual information is retrieved from the associative memory

and compared with the current visual information.

Let us assume now that the robot holds and swings a stick. When the tip of the stick accidentally hits

a target, a tactile sensory pattern sT [t] is induced at the visual location identified by the tip of the stick

rV
s [tc] (tc is the time of contact). The tactile sensation sT [t] is fed to the associative memory and the

associative memory recalls the learned visual patterns r̃V
h [t] and r̃V

t [t]. Both retrieved patterns are then

compared with the ones actually obtained rV
s [t] and rV

t [t]. Consistency between the two patterns leads

to spatial “rationalization”, that is, the spatial location rV
s [tc] where the “contact” occurs is equated

with the spatial location rT
h [tc] where the tactile sensation sT [tc] originates from.

By adopting this strategy the robot can determine which controller should be employed in order to

use the stick (here, the controller of the hand), and to learn the reach-extending controller based on the

available visual information rV
s [t] and the efference copy θ[t]. After learning, the robot is able to use

the tool in the same manner as the hand: the robot first generates a set of paths, internally simulate

those paths, and finally moves the tool along an executable trajectory. We are allowed to say that the

tool has actually become a part of the body, and has been integrated in the robot’s body schema.

4 Implementation

In this section, we describe our experimental setup and the implementational details of our model.
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4.1 Experimental setup

Our experimental setup consists of a small-sized table-top humanoid robot (Fig. 4 and Fig. 6). The

robot is equipped with one color CCD-camera, two touch sensors (located in the robot’s hand), and

a two-link manipulator constrained to move in the horizontal plane. The robot’s task is to learn to

reach for and touch a colorful object located in front of it, first with its “bare hand”, and then—using

the acquired know-how—with a stick. By means of the stick the robot can extend the distal link of its

manipulator and hence its action space. A contact between the hand and the object, or the stick and the

object activates the switches in the hand’s palm (Fig. 5) whose outputs are fed to the neural system (see

below). Note that the activation of the switches is dependent on the target approach direction. For the

acquisition of the positions of limbs and objects on the plane the CCD-camera is used. We pre-calibrate

the distortion of the lens and pre-calculate the transformation from camera-centered coordinates to

body-centered coordinates. Both operations are performed using a set of perspective images collected

with the camera before performing the actual experiments.

The information entering the system is the following: (a) tactile information sT [t] originating from

the touch sensors; (b) visual information consisting of the positions of the robot’s hand rV
h [t], the tip

of the stick rV
s [t], and the target object rV

t [t]; and (c) proprioceptive information given by the joint

angles θ[t] (the proprioceptive sensation is analogous to efference copies because the robot’s actuators

are feedforward position-controlled servo motors). The approaching direction φ of the hand (or the

stick) to the target is the angle formed by the line connecting the hand (or the tip of the stick) and a

horizontal line parallel to the torso of the robot (see Fig. 6).

Figure 4: Robot used in our experiments (left). Snapshots of a selected reaching experiment (right).
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Figure 5: Palm module of the robot. Schematic representation (left), and realization (right).

Camera

Planimetrical
two linked manipulator

Extension of distal link
as tool
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Figure 6: Schematic illustration of experimental setup (left), and variables used in our model (right).

See text for details.

4.2 Design of spatio-temporal associative memory

The implemented associative memory is shown in Fig. 7. It consists of the combination of two associative

memories: a gating neural network (GNN) associating the visually detected target approach direction

with tactile information, and (b) a nonmonotone neural network (NNN) [33] associating tactile signals

with the distance d[t] between hand and target. Both networks are essentially augmented Hopfield

neural networks and an incomplete or noisy input can be used to retrieve the stored pattern.

∫

Vision

Distance d[t]

NNNGNN

sT[t]Tactile signal

Approaching
direction φ[t]

p[t]

rV
t [0]rV

h [t] -

Figure 7: Visuo-tactile spatio-temporal associative memory. The memory is composed of a gating neural

network (GNN) and a nonmonotone neural network (NNN).
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Gating neural network (GNN)

The GNN is composed of 12 neurons which have the following activation function:

yi = sgn

⎛
⎝∑

j

wijyj + zi − µ

⎞
⎠ , (1)

where wij is the connection weight from neuron j to neuron i, yi is the output of neuron i, zi the input

to neuron i, µ a fixed threshold, and sgn(x) a function returning +1 or −1 depending on the sign of the

argument x. The GNN obeys an augmented Hebbian-learning rule [34]:

w∗
ij = wij + yi(yj − yiwij) (2)

where w∗
ij and wij are the new and the old weight, respectively.

As shown in Fig. 8, the tactile feedback sT [t] is fed to two sensor neurons. The approaching direction

φ[t] is first weighed by 10 Gaussian kernels fully connected to each other. The weighted values are then

fed to ten hidden neurons (the rest of neurons in Fig 8). The purpose of the GNN is to associate tactile

sensation and the visually determined approach direction of the hand relative to the target object,

implying a static and spatial (but not temporal) association between vision and touch.

Approaching
direction

Gaussian
Dispersion

GNN GNN
or

Learning
phase

After 
learning

φ[t]

sT[t]Tactile signal{

φ[t]

φ[t]sT[t]

sT[t]

Figure 8: Gating neural network (GNN). Information flow during learning (left) and after learning

(right). φ[t] is the approaching direction, sT [t] is the tactile pattern.

Connection between networks

The outputs yi[t] of the tactile neurons of the GNN (neurons connected to the tactile sensors) are

eventually summed according to:

p[t] =
∑
t′<t

∑
i∈tactile sensors

yi[t′] (3)

where p[t] is the sum over time up to time t. Note that because the output of the tactile sensors is either 0

(absence of collision) or 1 (presence of collision) p[t] represents a signal containing a slope and is extended

in time (see Fig. 7). The purpose of this sum is to transform tactile patterns sT [t] (localized in time)

into a signal varying over time, reason being that it is easier for the NNN to learn temporally extended

input patterns. The Hopfield-like network used for the association of visual and tactile patterns is a

sequential memory and learns patterns at each time step. Partially correct input patterns are sufficient

for the system to retrieve stored patterns. It means that the patterns learned at each time step should
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(ideally) differ from each other. Patterns containing a slope satisfy this requirement. In this case the

network functions as a bidirectional associative memory (e.g. learning pattern 1 in Fig. 9). By contrast,

if one of the learning patterns is constant, the network works as a unidirectional memory (e.g. learning

pattern 2 in Fig. 9).

Full connection

Input a[t] Input b[t]
Gaussian
dispersion

Learning signal 1

Bidirectional association

time

a1

time

b1

time

a2

time

b2

Learning signal 2

a1 b1

b1 a1
Unidirectional association

a2 b2

b2 not a2

OutputInput OutputInput

Figure 9: Ideal requirement of Hopfield-like neural network (left) for association of temporal patterns.

Unidirectional association (center), bidirectional association (right).

Nonmonotone neural network (NNN)

The NNN is composed of 40 neurons. As shown in Fig. 10, 20 neurons of the NNN codes for the distance

d[t] between hand and target, whereas the other 20 neurons codes for the tactile pattern p[t]. Both are

weighed by 20 Gaussian kernels. The activation dynamics of the NNN is governed by the following set

of equations:

p[t]

Summed
tactile signalDistance

Gaussian
Dispersion

d[t]
NNN NNN

or
Learning
phase

After 
learning

p[t]

p[t]

d[t]

d[t]

Figure 10: Nonmonotone neural network (NNN). Information flow during learning (left) and after

learning (right).

τ
dui

dt
= −ui +

∑
j

wijyj + zi (4)

yi = f(ui) (5)

f(x) =
(1.0 − e−cx)(1.0 + κec′(|x|−h))
(1.0 + e−cx)(1.0 + ec′(|x|−h))

(6)

where τ is an update time constant, ui the internal potential of neuron i, wij the connection weight from

neuron j to neuron i, yi the output of neuron i, and zi = λγi an external input to neuron i (as described

in [33]); for all neurons λ is constant throughout the learning phase in order to realize a bidirectional
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associative memory. The learning rule of the NNN reads

τ ′ dwij

dt
= −wij + αγiyi (7)

τ ′ being the learning time constant, γi the learning signal for neuron i, and α = α′xiyi the learning

coefficient (α′ was fixed). For all values of the parameters refer to Table 1.

These coupled networks can effectively learn the association among spatio-temporal patterns. Be-

cause of the Hebbian-like learning, the tactile and visual patterns are fed to the networks only during

the learning phase. Due to its associative capabilities, when one modality is fed to the system, the

pattern of the other modality can be recalled.

Table 1: Parameters of nonmonotone neural network.
∆t τ τ ′ λ α′ c c′ h κ

0.05 2 30000 0.2 0.2 50 10 0.5 -1.0

4.3 Design of kinematics learning

In our experiments the tool is a stick attached to the distal link of the arm of the robot. The Jacobian

matrix and the forward kinematic equations are given only for the hand. The relation of joint angles θ

and the position of the end effector r (hand or tip of tool) can be expressed as:

δr = J(θ)δθ (8)

J(θ) =

⎡
⎣ −l1s1 − l2s12 −l2s12

l1c1 + l2c12 l2c12

⎤
⎦ (9)

where J is the Jacobian, li (i = 1, 2) is the length of link i, s1 = sin θ1, c1 = cos θ1, s12 = sin(θ1 + θ2)

and c12 = cos(θ1 + θ2). The above equation is specialized for the hand and the tip of the stick to yield

the following equations:

δrh = Jh(θ)δθ (10)

δrs = Js(θ)δθ (11)

where rh and Jh are the position and the Jacobian matrix of the hand, and rs and Js are those of

the stick. Note that the only difference between hand and stick is their length. It seems a reasonable

assumption because an object held in the hand is equivalent to an enlarged or deformed hand. The

relationship between the Jacobians is straightforward:

Js(θ) = Jh(θ)Jc. (12)

Equation (12) means that a robot can learn to use a stick if it can learn the mapping from one Jacobian

to the other. We substitute (12) into (11), rearrange the equation with Jh(θ) and the displacement δrs

of the performed movement δθ[t], and obtain
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Θ′ = JcΘ (13)

Jc = Θ′Θ+ (14)

Θ′ =
[

(J−1
h (θ)δrs)[t] (J−1

h (θ)δrs)[t − 1] . . .
]

(15)

Θ =
[

δθ[t] δθ[t − 1] . . .
]

(16)

where + denotes the pseudo-inverse.

Because it is linear and constant, the matrix Jc should be relatively easy to learn. We thus use a

simple two-layered perceptron whose input and output are J−1
h (θ)δrs[t] and δθ[t], respectively. The

perceptron works as the extensional transformation J−1
c for the controller of the hand J−1

h .

5 Experiments

In the first experiment, the robot reaches and touches a target with its “bare” hand. The robot conse-

quently experiences multi-modal sensory information which is integrated spatially and temporally and

stored in the associative memories. To generate the reaching movements, we use quadratic Bezier curves

describing the path connecting hand and target. The hand reaches the target by approaching it from

four different directions (φ[tc] = 60, 90, 240, 270 [deg]; tc is the time of contact). The robot first sim-

ulates all movements, then selects a possible trajectory, and eventually executes the movement (Fig. 4

right). The expression of this behavior leads to a set of visuo-tactile patterns: the cases of φ[tc] = 60,

90, 240 and 270 [deg] are shown in Fig. 11. Each pattern represents an attempt to approach the target.

The top row is the distance d[t] between hand and target. The second row is the approach direction

φ[t]. The two bottom rows show the response patterns of the tactile sensors A and B located in the

robot’s palm. The patterns are shifted in time so that the time of contact is 0 [msec]. Because the visual

patterns are cluttered after contact, they are delayed by 1500 [msec], and then fed as learning signals to

the associative memory. The activation patterns of the NNN are updated until its state stabilizes for

every input and for each time step. Similarly, the GNN learns at every time step the spatio-temporal

patterns of its input.

In the second experiment, we make the robot hold and swing a stick. When the robot accidentally

hits the target with the tip of the stick, it obtains concurrent tactile and visual information. The

consequent tactile activation patterns is then fed to the associative memory, and the visual patterns d[t]

and φ[t] are extracted from the NNN through the GNN. If the visual and tactile feedback is temporally

consistent with the stored information, the robot becomes “aware” of the extension of its hand and starts

learning a reach-extending controller for the stick. Typically in less than 60 [sec] the robot learned to

use the stick as a tool as if it were its hand. Two input and output patterns are shown in Fig. 12: if

putative tactile signal are input into the associative network, the robot can recall the visual images of

approach and contact. Here the inputs of the GNN are the step waveforms which are activated at time
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Figure 11: Spatio-temporal patterns generated when reaching target with “bare” hand. First row:

distance between hand and target object. Second row: approach direction φ[t]. Third and fourth rows:

activity of touch sensors A and B. The approaching directions at the time of contact φ[tc] are 60, 90,

240 and 270 [deg].

0. Those inputs are summed by (3) and fed to NNN as signals with slope. Two input patterns in Fig. 12

indicate those slopes. One corresponds to the activation of tactile sensor A, whereas the other relates to

the activation of tactile sensor B. The recalled patterns were time-correlated with the visual patterns

obtained when the robot swung a stick and hit the target. The time-correlations with and without tool

were consistent. It is the temporal consistency and the spatial difference between the hand and the tip

of the tool that drive the system to learn the Jacobian.
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Figure 12: Visual patterns recalled by the associative memory (NNN) when a tactile pattern is used as

input. First row: distance between object and tip of tool. Second row: approach direction φ[t]. Third

and fourth row: time-integrated activity of touch sensor A (left), activity of touch sensor B (right).

During the learning of the controller, the robot moved individually its joints for 25 [sec] (as can be

seen in Fig. 13 (left) and Fig. 14). The resulting visual patterns δrs[t] as well as the perceived movement

δθ[t] were fed every 500msec to the NNN. The experiment was repeated 50 times with a fixed learning
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coefficient. The learning converged rapidly as depicted in Fig. 13 (right). The ripples in the learning

error indicate that once the tip of the tool touched the object, the robot did not stop moving but kept

oscillating to and fro the object. For any given Js, our experimental results Jc are in agreement with

our theoretical predictions.
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Figure 13: Left: trajectories of hand and tool tip during learning inverse kinematic transformation (one

learning episode took approximately 25 [sec]). Right: learning error (sampling frequency is 2Hz).

Figure 14: Experiment of inverse kinematics learning.

Successful learning means that the robot can use the stick as if it were the hand by merely using

the learned Jacobian Jc. The same quadratic Bezier curves obtained for the hand are in fact also used

to generate reaching movements with the stick. The movements are first simulated, and then after

selecting an appropriate trajectory, they are actually executed. Figure 15 (left) reproduces some of the

simulated trajectories. The robot was able to judge whether the target was reachable by the hand or

if the stick had to be employed. Here, it could successfully opt to use the tool and execute one of the

possible paths. The trajectories of the hand and stick tip are depicted in Fig. 15 (right).
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paths that can be used to perform a movement. Right: actually performed movement.

6 Discussion

In alignment with recent neuroscientific evidence, we suggested that temporal integration of visual and

tactile information might be a key mechanism underlying body schema adaptation. By drawing on this

mechanism, we introduced a model of body schema adaptation which we instantiated in a small-sized

table-top humanoid robot. The model was tested in an experimental scenario in which the robot had

to learn to reach for and touch a visually salient object lying in front of it. To successfully perform in

this—admittedly simple—learning task, we endowed the robot with the following “learning” strategy:

It first learned the temporal relationship (i.e. timing) between visual and tactile information, and then

based on the acquired “know-how”, if the object was out of reach for the hand, the robot learned to use

a stick to reach for and touch the object. A successful performance in this case was only possible if the

body schema was extended to include the stick.

The first issue that needs to be discussed concerns the selection of the point(s) of visual attention.

In our study, we simplified this problem by attaching colored markers to the hand, the tip of the tool,

and the target object, making them visually salient, and thus identifiable and segmentable with a simple

algorithm. If we consider more realistic model, we have to take into account automatic attention of those

points. We justify our choice by noting that although attention is a relevant and highly investigated

problem in cognitive science involving both low-level and high-level cognitive processes, it is not of the

essence for the current implementation of our model. There are many instances where visual attention

plays a role of course, and we will address the issue in the future. Consider, for instance, a situation

in which multiple moving objects co-exist, or a case in which a “featureless” or inconspicuous point

is crucial for the functionality of a tool (e.g. a small lever hidden below a table). Which point of

attention should the system choose? More specifically, should attention be directed to the hand or to
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the stick, or the object itself? And in which order? One possible solution would be, as attempted here,

to visually attend to the object whose motion is synchronized with the motion of a body part (e.g.

hand). Generally speaking, however, multiple points of attention co-exist, and this represents a not

trivial problem for most currently available models of visual attention. We hypothesize that combining

our framework with a more refined model of visual attention (for a review of bottom-up (image-based)

and top-down (task-dependent) models visual attention, see [35]), would actually show that temporal

integration provides a partial clue of how to select from a set of candidate points of visual attention.

In a sense, when the hand or the tool touches the object, visual, tactile, and proprioceptive sensory

information co-occur giving an additional feature which can be used in the attentional decision-making

process.

In order for our model to be more realistic, additional (possibly important) factors have to be

included. For example, the model does not take into consideration the shape of the object or the

appearance of the tool and its similarity with the limb (here: the hand). Both factors have been shown

to influence body schema or image extension [20]. However, because we did not consider these factors,

our model is able to deal with the extended and the non-extended limb homogeneously regardless of

their shape or appearance.

A further issue concerns the use of temporal integration as the only underlying mechanism. The

key property of temporal integration of sensory information is that it holds independently of form and

shape of the tool, e.g. a robot can reach for and touch objects with its hand, with a small tool, or

with a big tool. It follows that any more advanced version of our model will also have to include

temporal integration as one of its fundamental principles. In other words, the proposed model can

be scaled up to more complex scenarios, maintaining the same underlying principle. Timing seems to

be an important and invariant characteristic of tool-use in general. When touching an object using a

stick or another tool (e.g. striking a nail with a hammer), there is typically a displacement between

visual and tactile information. Despite the visual displacement (and thus the difficulty of integrating

information spatially), the timing is identical, that is, visual, tactile, and proprioceptive activity co-

occur, and information can be integrated temporally. Also related to the scalability issue is the inclusion

of additional modalities. For instance, auditory signals such as a slapping sound could be used as a

reinforcement signal for tactile sensation [36].

Before concluding the discussion, we reiterate that the main point here is that generalization from

hand to tool is possible and is based on previously acquired knowledge, in this case, the knowledge

about the timing of visual and tactile information. We suggest that it is possible to generalize this idea

to even more complex tool-use skills.

7 Conclusion

We proposed a novel model of tool-use dependent body schema adaptation. Our model was inspired by

neurophysiological findings, in particular a phenomenon known as “body schema extension”, which has
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been observed in monkeys and in humans. We tested our model by instantiating it in a robot whose

task was to learn to use a simple tool to extend its reach. Our experimental results show that the model

allows the robot to extend its body schema to incorporate an external (extra-corporeal, inanimate)

object through the temporal integration of multisensory information (tactile and visual). We conclude

that to learn to use tools through actor-environment interaction, body schema adaptation might actually

be a good strategy. Another conclusion is that a plastic body schema is a necessary requirement for

tool-use skills to emerge, and that the approach in which first a body schema is constructed may have

actual validity for achieving higher-level functions.

In line with the approach advocated by developmental robotics, our model represents only the first

step towards the acquisition of a truly adaptive robotic body schema. If a robot could acquire a body

representation similar to ours, then it might actually also develop high-level cognitive functions such as

imitation [1, 14] or spatial perception [2]. Future work will be mainly aimed at extending the model

proposed in this paper to include imitative learning.
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