
Fast Object Detection for Robots in a Cluttered Indoor Environment
Using Integral 3D Feature Table

Asako Kanezaki, Takahiro Suzuki, Tatsuya Harada, and Yasuo Kuniyoshi

Abstract— Realizing automatic object search by robots in
an indoor environment is one of the most important and
challenging topics in mobile robot research. If the target
object does not exist in a nearby area, the obvious strategy
is to go to the area in which it was last observed. We have
developed a robot system that collects 3D-scene data in an
indoor environment during automatic routine crawling, and
also detects objects quickly through a global search of the
collected 3D-scene data. The 3D-scene data can be obtained
automatically by transforming color images and range images
into a set of color voxel data using self-location information.
To detect an object, the system moves the bounding box of the
target object by a certain step in the color voxel data, extracts
3D features in each box region, and computes the similarity
between these features and the target object’s features, using
an appropriate feature projection learned beforehand. Taking
advantage of the additive property of our 3D features, both
feature extraction and similarity calculation are considerably
accelerated. In the object learning process, the system obtains
the feature-projection matrix by weighting unique features of
the target object rather than its common features, resulting in
reducing object detection errors.

I. INTRODUCTION

It is a frustrating task for people to locate objects in an
untidy indoor environment. This is especially true in a com-
munal area such as an office or a laboratory, where objects
are often lost because they have been moved somewhere by
someone else. Our objective is to develop a mobile robot
system (Fig. 1) that can automatically locate objects in a
fairly vast indoor environment, in which a number of people
reside. While automatically and routinely crawling through
the environment, the robot updates the 3D-scene data. When
the system receives a request to search for a specific object,
it performs a global search of the 3D-scene data and selects
several regions that appear most similar to the target object.
The robot then proceeds to each of these areas, in descending
order of similarity, to locate the object.

This paper focuses on the object detection process using
the 3D-scene data from an environment, consisting of a
colored-textured surface mesh obtained by a camera and
a range sensor on the robot’s head. The scanned data are
restored using the robot’s location information obtained by
SLAM, and are registered into a 3D map of the environment
once the crawling has been completed.

A. Kanezaki, T. Suzuki, T. Harada, and Y. Kuniyoshi are with Graduate
School of Information Science and Technology, The University of Tokyo,
7-3-1 Hongo Bunkyo-ku, Tokyo Japan
kanezaki@isi.imi.i.u-tokyo.ac.jp
t-suzuki@isi.imi.i.u-tokyo.ac.jp
harada@isi.imi.i.u-tokyo.ac.jp
kuniyosh@isi.imi.i.u-tokyo.ac.jp

MESA SR-4000
TOF sensor

PointGray Flea2
camera

Hokuyo UTM-30LX
LRF sensor

3D Reconstruction3D Reconstruction

SLAMSLAM

Fig. 1. Our mobile robot system equipped with a Flea2 camera, a SR-4000
TOF sensor, and a UTM-30LX LRF sensor.

There are several approaches to object detection in a
3D environment. The first involves detecting keypoints of
SIFT [1] or SURF [2] in 2D images of the environment,
comparing these to the keypoints in the images of the target
object, and then checking the 3D geometric validity of the
selected keypoints. The second approach is to match the 3D
points in the environment and those in the target object’s
3D model, and then consider the similarity of color textures
at these points. The former method is a texture-priority
approach, while the latter is a shape-priority approach. Where
the textures of the target object are characteristic, but not
the shape, (e.g., books) the former approach is appropriate,
whereas the latter approach is adequate when the shape,
rather than the texture, of the object is salient (e.g., single
colored soft toys). A system must switch between these
two approaches to cover a larger variety of target objects,
resulting in a loss of autonomy. Thus, it would be better
to extract features that consider both shape and appearance
information, and to select effective features for the detection
process by learning.

Another aspect that should be considered in determining
the object detection scheme is whether to use a keypoint-
based method or a region-based one. A keypoint-based
method finds the best matching pairs of points on the

scene and target object using 2D (such as SIFT [1]) or
3D (such as Spin Image [3]) descriptors, and then selects
the area with the greatest number of points. A region-based
method, such as the “sliding window”, selects a small part
of the scene, extracts some features (e.g., color histogram),
compares these to the target objects features, and then moves
to the next region. Although keypoint-based methods are
robust to occlusion and rotation, region-based methods that
exclude other objects before calculating similarity, are more
appropriate for detecting small objects in a vast environment.

We propose a framework for “sliding box” object detection
in color 3D voxel data. Whereas an image pixel means a 2D
square index at regular intervals, a voxel in 3D data implies
a 3D cubic index at regular intervals, with either RGB values
or the “empty” property. Thus, extracting features from color
voxel data means considering both color-texture and shape
information. In our sliding box approach, which is a simple
extension of the sliding window approach, a detection box
of a certain size is moved a fixed step at a time from the
origin to the end of the voxel data. In comparison to the
sliding window approach, there are two advantages to the
sliding box approach. First, the size of the detection box
can be fixed to be equal to that of the bounding box of the
target object, since an object’s scale is constant in 3D data.
Second, each object becomes more likely to be segmented by
the detection box, since it moves along not only the x- and
y-axes, but also the z-axis. In the sliding window approach
in 2D images, the background in the detection window tends
to complicate object detection. In the sliding box approach,
on the other hand, other objects in both the background and
foreground are kept out of the sliding box, even if they appear
similar to the target object in the images.

This paper documents the incremental work done since
our previous report [4], [5]. The main contribution is the
extension of our object classification method [4] and its
application to detecting objects in a large environment. We
introduce new color 3D features which are improved versions
of the features in [4], [5]. Moreover, we propose a method for
learning each object’s classifier that can be used effectively in
an environment containing many unknown objects. To learn
such a classifier, the system reduces the weight of common
features in the environment and instead increases the weight
of unique features observed in the target object’s model.
This learning process does not require segmenting or labeling
objects, other than the target object. In addition, we use a fast
sliding box scheme using efficient feature extraction. Finally,
constructing a robot system that crawls automatically and
collects 3D-scene data in the environment and creating the
semi-automatic process of obtaining 3D data of target objects
are supplementary contributions.

II. RELATED WORK

The challenge of locating objects using mobile robots
has been widely researched in recent years. Viswanathan et
al. [6] use the LabelMe database [7] and Kollar et al. [8]
the Flickr database to learn the relationship between objects
and places in a planned object search. Such a search can

be classified as an “indirect search” [9], since the object-
search framework makes use of information of other objects
or places closely related to the target object. This approach,
however, is not successful when the target object is moved
to a different place than its usual one. Therefore, we adopt
the approach of detecting objects directly in the 3D data of
the environment, obtained during the routine crawling of an
autonomous mobile robot.

Regarding robot research on direct object search in an
environment, [10], [11] use 2D images, while [12], [13] use
3D data. Ma et al. [13] use both photometric information and
3D shape information. As a first step, they narrow down the
number of candidates for the target object through a coarse
global search using a color histogram, and then they perform
a local search with SIFT [1] descriptors in the second step.
Although the two-step approach comprising a coarse and
fine search, is computationally efficient, the color histogram
lacks expressiveness, and therefore, the search may fail if
the color of the target object is not salient. In the first
step, it is important to reduce the false-positive error, while
keeping the false-negative error as low as possible. We focus
on increasing the performance of the first step without any
increase in computational cost.

The state-of-the-art of automatic 3D reconstruction of
indoor environments with color textures has advanced dra-
matically, both in computer vision with cameras [14], [15]
and in robot research with SLAM [16]. Regarding robot
applications, colored 3D data of environments can easily be
obtained by TOF sensors with associated cameras [17]–[19],
which are also used in our work.

There are a variety of well-studied 3D descriptors for
recognizing environments. Semantic labeling of 3D points
in an environment is discussed in [20], [21]. However,
these descriptors, which extract low-level shape patterns,
are more suitable for scene description than for specific
object detection. In [22] shape primitives are used to de-
tect chairs, although it is difficult to adapt this technique
to the detection of objects with arbitrary complex shapes.
Regarding detection of 3D free-form objects, [23] uses a
Spin Image [3], a well-known rotation-invariant descriptor,
while [24] proposed a new descriptor, which is defined by the
relative position and orientation of two oriented points. Both
these descriptors enable shape description, but do not take
color-texture information into consideration. There are also
a few descriptors that combine 3D shape and color patterns.
Huang and Hilton [25] developed the shape-color histogram,
which yields better performance than the shape histogram in
recognizing moving objects in multiple-view videos. Never-
theless, although they are effective in applications where the
target object can be observed in its entirety, it is difficult
to apply shape-color histograms to partial data of objects
observed in an everyday environment.

III. SYSTEM OVERVIEW

A diagram of the search system is shown in Fig. 2.
The robot routinely crawls around an indoor environment,
regularly updating the 3D-scene data of the environment.

Auto crawling &
Update 3D-scene

Yes

Yes

Yes

No

No

No

Any request there?

Any candidate there?

Do global search &
Output candidate list

Pop a candidate &
Move there &

Do local search

Is object found?

Fig. 2. Search system diagram.

When the system receives a request to locate an object, it
executes a global search of the 3D-scene data. In this process,
the system performs a sliding-box search to calculate all the
similarities between the local regions and the target object,
and then outputs a list of regions with higher similarities than
a certain threshold. Next, having moved to the first area on
the list, in descending order of similarity, the robot searches
the area, updates the 3D-scene data, and repeatedly performs
object detection. If the target object is not discovered, the
robot moves to the next area on the list. If the target
object cannot be found in any of the areas on the list, the
robot restarts its routine crawling and searches the whole
environment.

A. Automatic Routine Crawling in Environment

Our mobile robot has a pan-tilt head at a height of 1.4
meters above the floor, on which a PointGray Flea21 camera
and a MESA Swissranger SR-40002 TOF sensor are affixed
parallel to each other (Fig. 1). We equipped the robot with
a Hokuyo UTM-30LX3 LRF sensor located 0.45 meters
forward of the robot’s center and 0.48 meters above the
floor, to create the 2D map of the environment, perform
self-localization, and avoid obstacles while carrying out au-
tonomous locomotion. An initial 2D map of the environment
is created using CoreSLAM [26] by manually controlling the
path of the robot in the environment. Once the map has been
created, it is used by the robot for localization while crawling
automatically in the environment. The robot navigates along
a circular route viewing the outer wall of the environment and
avoiding obstacles when the LRF sensor detects adjacency.
The robot’s motion is defined as the iteration of moving
for 3.5 sec, stopping for 1.0 sec, capturing a color image
and a range image, and stopping again for 0.5 sec. The

1http://www.ptgrey.com/products/flea2/index.asp
2http://www.mesa-imaging.ch/prodview4k.php
3http://www.hokuyo-aut.co.jp/02sensor/07scanner/utm 30lx.html

Sliding Box

Learning

3D Scene

3D Object

Feature Table

Feature Space

Compressed Feature Space

Summing up

Projection to

Similarity Computationlabel:
“begonia”

Fig. 3. Overview of object detection, consisting of feature extraction,
sliding box, and similarity calculation.

motion intervals were appropriately designed for observing
the environment in meaningful proportions.

B. Creating color voxel data of environment

To match the corresponding points in a color image and
range image, the stereo disparity of each point is computed
from its depth value in the range image. Then each pair
consisting of a color image and a range image is transformed
into surface mesh data with color textures. Surface mesh
data are automatically obtained by creating edges between
two points whose corresponding pixels in the range image
are adjacent to each other. Suppose that A(i, j), B(i+ 1, j),
C(i, j + 1), and D(i+ 1, j + 1) are neighboring pixels on a
range image. There are two ways of creating two triangular
faces by connecting these four points; either by connecting
A and D or by connecting B and C. The system compares
the lengths of segments AD and BC in 3D coordinates, and
then selects the shorter. Note that the system does not create
a face with an edge longer than 100 mm. The coordinates of
vertices in the surface mesh data are transformed to global
coordinates using the robot’s location.

Finally, all the surface mesh data are registered and
transformed into a set of color voxel data using the method
described in [4]. Note that the voxels on the surface of each
object have RGB values, while those within each object have
the empty property.

IV. OBJECT LEARNING AND DETECTION

An overview of our object detection system is shown in
Fig. 3. Color voxel data of an environment are divided into
small cubic regions of an t × t × t grid, and then feature
vectors are calculated per sub-region. The length of the side
of a sub-region becomes the step size for the sliding box.
When a target object is given, the system finds the maximum
length l (mm) of the sides of the target object’s bounding
box. Let the length of a voxel’s side be v mm, and c be an
integer value near l/(vt). The detection box is determined
to be equal to c× c× c sub-regions.

Since our proposed color 3D features have the additive
property, the feature vector of the detection box is computed

by summing the c × c × c feature vectors computed from
corresponding sub-regions. Taking advantage of this additive
property, we use efficient feature extraction by preparing a
feature table, consisting of feature vectors computed from
arbitrary box regions extending from the origin. This idea
is a simple extension of the “Integral Image” used in Viola-
Jones object detection [27]. We give the details in Sect. IV-C.

The classifier for each target object is learned as a prepro-
cessing step. This semi-automatic learning process requires
several different views of the target object shown by the user.
We improved the method for classifier learning proposed in
our previous work [4], specifically by introducing weighting
features as a function of the increasing scale of unique
features seen in the target object, as well as the reducing
scale of common features seen in most objects. Details are
given in Sect. IV-B.

A. Feature extraction and projection-matrix computation

To describe 3D objects, we used the Color Cubic Higher-
order Local Auto Correlation (Color-CHLAC) features in [4],
[5], computed from color 3D voxel data by measuring the
autocorrelation function of colors in two neighboring voxels.
The voxel property f(x) (where x is the position of the
voxel) was defined as a 6-dimensional vector which has L1-
norm equality for all variations of RGB values. In this work,
we redefine f(x) so that it has L2-norm equality and call
the proposed new features Circular Color Cubic Higher-order
Local Auto Correlation (C3-HLAC) features.

Let the R, G, and B values of a voxel be r(x), g(x), and
b(x), respectively. These values are normalized between 0
and 1. In our previous work [4], [5], f(x) was defined as
follows:

f(x) = [r(x) 1−r(x) g(x) 1−g(x) b(x) 1−b(x)]
T

if the voxel does not have the empty property; otherwise,
f(x) becomes a zero vector.

Here, we redefine f(x) as follows:

f(x) = [r1(x) r2(x) g1(x) g2(x) b1(x) b2(x)]
T

⎧⎨
⎩

r1(x) ≡ sin
(
π
2 r(x)

)
, r2(x) ≡ cos

(
π
2 r(x)

)
g1(x) ≡ sin

(
π
2 g(x)

)
, g2(x) ≡ cos

(
π
2 g(x)

)
b1(x) ≡ sin

(
π
2 b(x)

)
, b2(x) ≡ cos

(
π
2 b(x)

)

In this new representation, since the norm of f(x) is constant
for any color, the distance between colors is even, and thus
features can be learned in a proper metric space.

C3-HLAC features are defined as the summation of f(x)
(
∑

f(x)) and f(x) correlation between two neighboring
voxels (

∑
f(x) fT (x + a)) over the whole area of the

target voxel grid. The displacement vector a has 14 different
patterns. Similar to a Color-CHLAC feature vector, a 981-
dimensional C3-HLAC feature vector is obtained by con-
catenating all the elements in C3-HLAC features extracted
from both the original color voxels and binarized color
voxels (see details in [4]). Finally the system carries out
Principal Component Analysis (PCA) on the feature vectors
and reduces the dimension from 981 to d.

In this work, we compute the PCA matrix by sampling all
the feature vectors extracted from sub-regions in the color
voxel data of the environment. This projection-matrix is used
for compressing feature vectors. In this step, it is possible
not only to speed up the similarity calculation, but also to
increase the performance of the similarity calculation using
whitening [28], the details of which are explained in Sect. IV-
B. Note that the projection-matrix is computed only once
when the robot observes the environment for the first time,
and the system uses the same projection-matrix thereafter.

B. Learning

Learning a good classifier for a certain object is a problem
of selecting appropriate features that can separate the object
and other unknown objects. An overview of our learning
method and similarity calculation is shown in Fig. 4. In
the first learning step, the system computes a projection-
matrix P through PCA of the features extracted from the
environment’s color voxel data. Then each principal compo-
nent axis is divided by the square root of its eigenvalue, an
operation known as whitening [28]. Let the transformed axes
be Pw. In the next step, the system extracts feature vectors
from all the sub-regions in the color voxel data of the target
object, with multiple views. Suppose the system is shown
K different views of the target object. In order to achieve
rotation invariance, the system generates 504 different poses
per view by synthetically rotating the initial pose by each
30 degrees for xyz-axes (see details in [4]). Supposing the
target object in k-th pose is divided into nk sub-regions, a
total of N ≡ ∑504K

k nk feature vectors are extracted. Then
the system compresses these feature vectors by multiplying
Pw and selects d top dimensions. Finally, the system obtains
a projection-matrix Q through PCA of the N compressed
feature vectors.

To calculate the similarity between the target object and
each candidate region in an environment, the system extracts
a feature vector z from the current detection box, and
then projects it to the target object’s feature subspace. In
[4], the similarity measure was defined to be the norm of
the projected feature vector, based on the Class-Featuring
Information Compression (CLAFIC) method [29]. In this
work, we weight each axis in the projection-matrix Q
by multiplying the square root of its eigenvalue. Let the
transformed axes be Qm. By projecting z to Qm space,
the system obtains the similarity measure called “multiple
similarity” [30], which emphasizes the similarity values on
the major axes in Q. The definition of the similarity measure
in our previous work [4] is given as (1), and the definition
in this work as (2).

Simprevious =
‖QTPTz‖
‖PTz‖ (1)

Simproposed =
‖QT

mPT
w z‖

‖PT
w z‖ (2)

A summary of the proposed similarity calculation is as
follows. In the first projection with Pw, the system extracts

z

zPQ T
w

PTw

T
m

Feature Space Feature Space

Object #1

Object #2...
Object #N Object #N

Similarity

Learning Similarity Calculation

wP

mQ

z

Fig. 4. Illustration of similarity calculation. The Pw represent the principal
component axes (divided by eigenvalues) obtained through PCA of the
whole environment’s features, the Qm represent the principal component
axes (multiplied by eigenvalues) obtained by PCA of the target object’s
features, and z represents the input feature vector.

principal features that are suited to describing the environ-
ment, by suppressing the weight of common features. On the
other hand, in the second projection with Qm, the system
selects principal features that can adequately represent the
target model, by emphasizing the weight of its primary
features. Therefore, the proposed method highlights unique
features on the target object, which, in other words, are
appropriate features for distinguishing the target object and
other objects in the environment.

C. Sliding-box object detection

Viola et al. [27] used an image representation called the
“Integral Image” to compute rapidly the summation of pixel
values in an arbitrary rectangle. This approach can be applied
not only to pixel values’ summation, but also to feature
vectors represented as the summation of descriptors. In this
paper, we call this feature representation the “Integral Feature
Table”. Since we apply this to voxel data processing, we have
extended this approach from 2D to 3D.

The definition of an “Integral Image” is the sum of the
image pixels of the upright rectangle stretching from the
top left corner to the bottom right corner. In a similar way,
the “Integral Feature Table” I(x, y, z) is defined as the d-
dimensional compressed C3-HLAC feature vector extracted
from the voxel area ranging from (0, 0, 0) to (x, y, z). Let the
feature vector of the voxel area with x ranging from x1 to
x2, y ranging from y1 to y2, and z ranging from z1 to z2, be
F (x1, y1, z1, x2, y2, z2). This is computed by the following
equation:

F (x1, y1, z1, x2, y2, z2) = I(x2, y2, z2)− I(x1, y2, z2)

−I(x2, y1, z2)− I(x2, y2, z1)

+I(x1, y1, z2) + I(x1, y2, z1)

+I(x2, y1, z1)− I(x1, y1, z1)

Using the “Integral Feature Table”, F (x1, y1, z1, x2, y2, z2)
can always be computed by adding the 8 cached feature
vectors, regardless of the size of the target object. Note that
this is not effective when the number of sub-regions included
in the detection box is smaller than 8.

Within the large color voxel data of an environment, only
the voxels on the surface of each object have RGB values,
while other voxels have the empty property. This means that
the object detection process can be accelerated by skipping
empty regions. Similarly to the “Integral Feature Table”,
we create a table that stores the number of voxels with
the occupied property, in the area ranging from (0, 0, 0) to
(x, y, z). Using this table, the number of voxels with the
occupied property in the detection box can be computed
quickly by adding 8 scalar values. If the number is less
than a certain threshold h, the system skips the similarity
calculation and moves the detection box forwards. In this
work, we set h to the minimum value of the occupied voxel
number in the training samples of the target object.

V. RESULTS

A. Experimental Setup

The target environment was our laboratory (Fig. 5(a)),
which is 7,950 (length) × 11,800 (width) × 2,700 (height)
mm. As a pre-processing step, we created a 2D map
(Fig. 5(b)) by moving the robot manually around the room,
as well as the initial 3D-scene data used for learning the
projection-matrix Pw. Note that the robots head was facing
outward, and therefore the 3D-scene data consisted of the
wall side of the room. To collect 3D-scene test data, the robot
moved around the room automatically along a given circular
route. In this experiment, we collected 18 different test
scenes of the whole room, including 59 target objects (Fig. 7)
in different orientations at different locations. Examples of
the captured images are shown in Fig. 6.

The robot learned the target objects during a pre-
processing step, in which the user displayed them one by one
to the robot and then input their labels. Note that the system
learns one classifier per object since it performs specific
object detection, not the classification of its category. To
learn its various aspects, each object was displayed in several
orientations. In this learning process, the target object’s
surface can automatically be segmented from the background
by clipping the region with depth in the range of 200 mm
of the minimum value.

The parameters were set as follows: the length of the
voxel’s side v to 10 mm, the size of the sub-regions for
learning objects to a 10× 10× 10 grid, the size of the sub-
regions for creating the “Integral Feature Table” to a 5×5×5
grid, and the dimension of the compressed feature vector d
to 100.

B. Evaluation

To evaluate the effect of the proposed learning method
(described in Sect. IV-B), we compared the following four
methods:
(a) using P without whitening and Q as CLAFIC,
(b) using P without whitening and Qm as multiple similarity,
(c) using Pw with whitening and Q as CLAFIC,
(d) using Pw with whitening and Qm as multiple similarity.
The proposed method in this work is (d), while the method
in our previous work [4] is (a).

Fig. 7. Images of 59 target objects, arranged in approximate order of increasing size from top left to bottom right.

11
80

0m
m

7950mm

(A) (B)

Fig. 5. Target environment: (A) layout of the room, and (B) 2D map
created by SLAM.

In (b) and (d), the dimension of the target object’s sub-
space r, which is the number of axes in Qm, does not
necessarily have to be less than d. This is because the
low-rank axes in Qm have small eigenvalues, and thus, the
elimination thereof has no significant effect. However, the
computation time for the similarity calculation is faster when
r is small. We found experimentally that 20 is an appropriate
value of r that does not substantially reduce the accuracy. In
(a) and (c), we tested nine choices for r, from 10 to 90, and
then chose the one that yielded the highest performance.

A comparison of DET (Detection Error Trade-off) is given
in Fig. 8. The vertical axis shows the miss rate, which is the
error rate that a correct object was not detected, while the
horizontal axis shows the false positive per window (FPPW),
which is the error rate that an incorrect object was detected.
The closer the DET curve is to the origin, the higher is
the performance. As shown in Fig. 8, introducing multiple

Fig. 6. Examples of Images captured during automatic crawling. Top row
shows raw images, and bottom row the ground truth of correct target objects.

similarity (method (b)) and whitening (method (c)) achieves
better results than the method in our previous work (method
(a)). Moreover, the proposed method, which is a combination
of multiple similarity and whitening (method (d)), yields the
highest performance.

A comparison of the average rate that the correct object
was ranked in the top q of the whole environment is shown
in Fig. 9. We refer to this rate as the q-rank rate. The q-
rank rate represents the probability that when the system
outputs the list of q candidate objects, it includes the correct
object. For example, if there is a single object somewhere
in the room that is being searched for, the system outputs a
list of 5 candidates, including the correct one, at a rate of
43.5% using the proposed method. The q-rank rate of each
target object in the proposed method is shown in Fig. 10. The
average computation time required to detect a single target
object in the whole room was 1.96 sec in a single thread,
using a Pentium D 3.2 GHz with 6.0 GB main memory.

C. Online trial

After narrowing down the candidate objects through the
global search with a sliding box, the robot moves succes-

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

q-
ra

nk
 ra

te
 [%

]

Object Number q=1 q=2 q=3 q=4 q=5

Fig. 10. Average q-rank rate [%] for each object. Each value is shown in red rectangles when q=1, green rectangles when q=2, cyan rectangles when
q=3, orange rectangles when q=4, and magenta rectangles when q=5. Each number below rectangles is correspondent to each object’s number in Fig. 7.

 10

 100

 0.001 0.01 0.1 1

M
is

s r
at

e
[%

]

False Positive Per Window (FPPW) rate [%]

(a) original
(b) multiple
(c) whitening
(d) hybrid (proposed)

Fig. 8. Comparison of DET.

0
5

10
15
20
25
30
35
40
45
50

q=1 q=2 q=3 q=4 q=5

(a) original

(b) multiple

(c) whitening

(d) hybrid
(proposed)

q-
ra

nk
 ra

te
 [%

]

Fig. 9. Comparison of average q-rank rate [%].

sively to each area containing one of the candidate objects,
and then looks around for the target object. Considering the
aim of this online search from the field of current view, we
investigated repeatedly executing all the processing including
voxel data reconstruction, feature extraction, and sliding box
object detection. The system outputs box regions, whose
similarities to the target object are higher than a certain
threshold.

Examples of the detection results are shown in Fig. 11. The
system basically succeeded in detecting the correct object.
On average, the system recorded 2.3 fps in dual thread,

using a Core2Extreme QX9300 2.53GHz with 8.0 GB main
memory. The results of the online object detection, as well
as those of global search, are shown in the attached video.

VI. CONCLUSION

In this paper, we developed a mobile robot system that
performs automatic crawling in an indoor environment, re-
constructs color 3D voxel data of the environment, and
detects objects through a global search. The system executes
sliding box object detection using the color voxel data, where
the size of the detection box is fixed to be equal to that of the
target object’s bounding box. To describe shape-and-color
patterns of the color voxel data, we introduced C3-HLAC
features, which are improved versions of the Color-CHLAC
features proposed in our previous work. Taking advantage of
the additive property of these features, the system can extract
features in the detection box very quickly by preparing the
“Integral Feature Table”.

One of the most significant contributions of this work is
the improved similarity measure that includes whitening and
multiple similarity. Using this similarity measure, the system
highlights unique features on the target object, which are
appropriate to distinguish the target object and other objects
in the environment. Experimental results show that introduc-
ing whitening and multiple similarity increases the detection
performance, and that the combination of these is superior to
each on its own. The computation time required for sliding
box object detection is sufficiently small. All the processing,
including voxel data reconstruction, feature extraction, and
sliding box object detection, can be performed online at 2.3
fps, if the target environment is confined to the field of
current view.

Our proposed object detection scheme aims to achieve
a fast global search, and therefore, avoids strict geometry
matching between objects in a scene and the reference model
of the target object. Implementing geometry matching as the
second step in the proposed method, after narrowing down
the candidate objects, remains one of our most important
future objectives.

21 21

37 37

54 54

55 55

Fig. 11. Examples of image outputs during the online search from the field of current view for each target object, #21, #37, #54, and #55 in Fig. 7.
Captured color images are shown in left, 3D-scene images in middle, and object-detected boxes in right. True positive samples are denoted by red boxes
and false positive samples by yellow boxes.

REFERENCES

[1] D. G. Lowe, “Object recognition from local scale-invariant features,”
in Proc. IEEE ICCV, 1999.

[2] B. Herbert, T. Tinne, and V. G. Luc, “Surf: Speeded up robust
features,” in Proc. ECCV, 2006.

[3] A. E. Johnson and M. Hebert, “Using spin images for efficient object
recognition in cluttered 3D scenes,” IEEE Trans. Pattern Anal. and
Mach. Intell., vol. 21, pp. 433–449, 1999.

[4] A. Kanezaki, H. Nakayama, T. Harada, and Y. Kuniyoshi, “High-speed
3D object recognition using additive features in a linear subspace,” in
Proc. IEEE ICRA, 2010.

[5] A. Kanezaki, T. Harada, and Y. Kuniyoshi, “Partial matching of
real textured 3D objects using color cubic higher-order local auto-
correlation features,” The Visual Computer, vol. 26, no. 10, pp. 1269–
1281, 2010.

[6] P. Viswanathan, D. Meger, T. Southey, J. J. Little, and A. Mackworth,
“Automated spatial-semantic modeling with applications to place
labeling and informed search,” in Proc. Canadian Conference on
Computer and Robot Vision (CRV), 2009.

[7] B. C. Russell, A. Torralba, K. P. Murphy, and W. T. Freeman,
“Labelme: a database and web-based tool for image annotation,” Int.
J. of Computer Vision (special issue on vision and learning), vol. 77,
pp. 157–173, 2008.

[8] T. Kollar and N. Roy, “Utilizing object-object and object-scene context
when planning to find things,” in Proc. IEEE ICRA, 2009.

[9] L. E. Wixson, “Gaze selection for visual search,” Ph.D. dissertation,
Department of Computer Science, Univ. of Rochester, 1994.

[10] Y. Ye and J. K. Tsotsos, “Sensor planning for 3D object search,” Comp.
Vision and Image Understand, vol. 73, pp. 145–168, 1999.

[11] S. Ekvall, D. Kragic, and P. Jensfelt, “Object detection and mapping
for service robot tasks,” Robotica, vol. 25, no. 2, pp. 175–187, 2007.

[12] F. Saidi, O. Stasse, and K. Yokoi, “A visual attention framework
for search behavior by a humanoid robot,” in Proc. IEEE Humanoid
Robots, 2006.

[13] J. Ma and J. W. Burdick, “A probabilistic framework for stereo-vision
based 3D object search with 6D pose estimation,” in Proc. IEEE ICRA,
2010.

[14] Y. Furukawa, B. Curless, S. M. Seitz, and R. Szeliski, “Reconstructing
building interiors from images,” in Proc. IEEE ICCV, 2009.

[15] R. A. Newcombe and A. J. Davison, “Live dense reconstruction with
a single moving camera,” in Proc. IEEE CVPR, 2010.

[16] B. Pitzer, S. Kammel, C. DuHadway, and J. Becker, “Automatic
reconstruction of textured 3D models,” in Proc. IEEE ICRA, 2010.

[17] B. Huhle, P. Jenke, and W. Straser, “On-the-fly scene acquisition with
a handy multi-sensor system,” Int. J. Intelligent Systems Technologies
and Applications, vol. 5, 2008.

[18] S. Todt, C. Rezk-Salama, A. Kolb, and K. D. Kuhnert, “GPU-based
spherical light field rendering with per-fragment depth correction,”
COMPUTER GRAPHICS forum, vol. 27, pp. 2081–2095, 2008.

[19] A. Kolb, E. Barth, R. Koch, and R. Larsen, “Time-of-flight sensors in
computer graphics,” in Proc. Eurographics, 2009.

[20] A. Nuchter and J. Hertzberg, “Towards semantic maps for mobile
robots,” Robotics and Autonomous Systems, vol. 56, pp. 915–926,
2008.

[21] R. B. Rusu, Z. C. Marton, N. Blodow, A. Holzbach, and M. Beetz,
“Model-based and learned semantic object labeling in 3D point cloud
maps of kitchen environments,” in Proc. IEEE IROS, 2009.

[22] J. Shin, S. Gachter, A. Harati, C. Pradalier, and R. Siegwart, “Object
classification based on a geometric grammar with a range camera,” in
Proc. IEEE ICRA, 2009.

[23] S. Ruiz-Correa, L. G. Shapiro, and M. Meila, “A new signature-based
method for efficient 3-D object recognition,” in Proc. IEEE CVPR,
2001.

[24] B. Drost, M. Ulrich, N. Navab, and S. Ilic, “Model globally, match
locally: Efficient and robust 3D object recognition,” in Proc. IEEE
CVPR, 2010.

[25] P. Huang and A. Hilton, “Shape-colour histograms for matching 3D
video sequences,” in Proc. IEEE ICCV Workshops, 2009.

[26] B. Steux and O. E. Hamzaoui, “Coreslam : a slam algorithm in less
than 200 lines of c code, accepted for the international conference on
control, automation, robotics and vision,” in Proc. IEEE ICARCV, to
appear, 2010.

[27] P. Viola and M. Jones, “Rapid object detection using a boosted cascade
of simple features,” in Proc. IEEE CVPR, 2001.

[28] C. M. Bishop, Neural Networks for Pattern Recognition. Oxford
Clarendon Press, 1995.

[29] S. Watanabe and N. Pakvasa, “Subspace method in pattern recogni-
tion,” in Proc. 1st Int. J. Conf on Pattern Recognition, 1973.

[30] T. Iijima, Theory of Pattern Recognition (in Japanese), ser. Basic
Information Technology, Vol. 6. Morishita Publishing, 1989.

