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Abstract

We propose a joint learning method for object classi-
fication and localization using 3D color texture features
and geometry-based segmentation from weakly-labeled 3D
color datasets. Recently, new consumer cameras such as
Microsoft’s Kinect produce not only color images but also
depth images. These reduce the difficulty of object detec-
tion dramatically for the following reasons: (a) reasonable
candidates for object segments can be given by detecting
spatial discontinuity, and (b) 3D features that are robust to
view-point variance can be extracted. The proposed method
lists candidate segments by evaluating difference in angle
between the surface normals of 3D points, extracts global
3D features from each segment, and learns object classi-
fiers using Multiple Instance Learning with object labels at-
tached to 3D color scenes. Experimental results show that
the rotation invariance and scale invariance of features are
crucial for solving this problem.

1. Introduction

Object classification and localization are fundamental is-
sues in various tasks, such as automatic object manage-
ment, object manipulation by personal robots and so on. In
these tasks, it is not only the appearance of objects in color
images that is useful but also their geometric information
given by depth images. The sensors in Microsoft’s already
globally popular Kinect capture color and depth images si-
multaneously, and the datasets of such RGB-D objects and
scenes [15] are readily available. Therefore, in the near fu-
ture it is expected that a large amount of RGB-D data will
be uploaded and shared for object learning in the real world.

However, there are still significant difficulties with how
to supervise objects in observed scenes. There exist datasets
with ground truth of object location, such as LabelMe [24]
and PASCAL VOC [16], but making such datasets has a

Figure 1. Overview of our system. Weak labels attached to each
pair of color and depth images are used for Multiple Instance
Learning, and the trained object detectors are used to localize ob-
jects in a new environment.

high human cost. On the other hand, “weakly labeled”
datasets in, for example, Flickr, where only the labels of
objects instead of their locations in images are given, are
much easier to create.

In this paper, we propose a joint learning method for
object classification and localization that uses Multiple In-
stance Learning (MIL) with weakly-labeled color and depth
images (See Fig. 1). Suppose there are several bags which
contain multiple instances. In an MIL scenario, a positive
bag label only enforces that the bag contains at least one
positive instance, whereas a negatively labeled bag contains
only negative instances. The proposed approach first re-



constructs 3D color points from a pair of color and depth
images, computes the normal of each point, and then di-
vides the whole point cloud into multiple clusters by de-
tecting boundaries which give large differences in normal
angles. Global features are then extracted from each point
cloud cluster, and they are trained as an instance of a “posi-
tive bag” if the target object’s label is attached to the whole
scene, or as that of a “negative bag” otherwise. In the test-
ing process, each point cloud cluster in the whole scene is
judged to be positive or negative by the learned object clas-
sifier.

The main contribution of our work is in the design of
features. Since we use weakly-labeled data, no previous
knowledge about each object’s appearance or even its size
can be used. Therefore, the features should be designed in a
manner that the variation brought by a change in viewpoint
is small while the differences between objects are large.
We developed scale and rotation invariant features based on
Circular Color Cubic Higher-order Local Auto Correlation
(C3-HLAC) Features [13], and showed better performance
in experiments. Moreover, this paper is the first research on
joint classification and localization learning using weakly-
labeled datasets obtained by color and depth sensors.

The rest of this paper is structured as follows. Section 2
discusses related work on joint learning of object classifi-
cation and localization, while the design of our 3D features
is presented in Section 3. Section 4 describes the method
of 3D point cluster segmentation, while Section 5 presents
some experimental results. Finally, Section 6 summarizes
our method and proposes ideas for future research.

2. Related Work
Joint learning of object classification and localization

by weakly-labeled images has attracted much attention re-
cently [2, 3, 4, 6, 7, 8, 9, 10, 14, 17, 20, 22, 23, 25, 27,
28, 30]. Of the part-based approaches [7, 9, 30], where
each object class is represented as a collection of salient
parts, Zhang and Chen [30] achieve scale-invariant repre-
sentation of objects by identifying the co-occurring high or-
der features of two images, using the idea of the generalized
Hough Transform. However, since the part-based approach
depends on the stability of the interesting point detector, it
is not useful for identifying textureless objects. Similarly,
in the works that are more focused on how to learn resion of
interest (ROI) for object categories [3, 6, 14], only salient
features are taken into consideration.

Other approaches are mostly regarded as segment-based,
based for example on Random Field [25], CRF [2, 8], bag
of words models [4], segmentation trees [27], and oth-
ers [10, 22, 23, 28]. The segment-based approach is actually
compatible with depth data, since geometry-based bottom-
up segmentation can list reasonable candidate objects using
spatial discontinuity information.

We propose a segment-based approach using depth im-
ages, 3D color features and MIL. We use object labels at-
tached to training images as binary bag labels for each ob-
ject and learn each object’s classifier, which outputs the
probability of the object for each segment. To perform MIL,
multiple levels of segments are listed up as instances in
positive or negative bags. There are several related works
that use MIL for learning objects from weakly-labeled im-
ages [5, 10, 17, 20]. Our work differs from them because
Maron and Ratan [17] and Chen and Wang [5] deal with
not instance-level but bag-level classification in their exper-
iments, Nguyen et al. [20] uses sub windows instead of pre-
cise segmentation, and Galleguillos et al. [10] evaluates sta-
bility of segments and thus does not consider multiple lev-
els of segmentation. Moreover, the novelty in our approach
is to use not image features but 3D color features which
are extracted from 3D color points reconstructed from color
and depth images. Taking advantage of the 3D property, we
design features which are robust to view point variation.

3. Features
3.1. C3HLAC Features

We designed our new 3D features based on the C3-
HLAC features [13] which this section describes. C3-
HLAC features are extracted from color cubic voxel data,
which are obtained by quantizing 3D color points. The
feature vector obtained is a histogram of local RGB cor-
relation values between neighboring voxels, and it there-
fore represents the characteristics of 3D color texture. Let
x = (x, y, z)T be the position of a voxel, p(x) be the flag
for occupancy of the voxel and r(x), g(x) and b(x) be its
RGB values normalized between 0 and 1. By defining r1 ≡
sin

(
π
2 r(x)

)
, g1 ≡ sin
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π
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, b1 ≡ sin
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π
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, r2 ≡
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)
, a

voxel status f(x) ∈ N6 is defined as follows:

f(x) =

{
[r1 r2 g1 g2 b1 b2]

T
p(x) = 1

[ 0 0 0 0 0 0 ]
T

p(x) = 0.

Although a 4-dimensional vector is enough to represent a
voxel status which has RGB values and occupancy p(x),
a redundant 6-dimensional vector is used here. This is to
make the norm of f(x) constant regardless of the RGB in-
tensity, which leads to eliminating bias in the feature space.

Let ai be a displacement vector from the reference voxel
to its neighboring voxel (e.g. [1 0 0]T ). The elements of
a C3-HLAC descriptor extracted from a voxel grid V are
calculated by the following equations:

q1 =
∑
x∈V

f(x), (1)

q2 =
∑
x∈V

f(x) fT (x), (2)



Figure 2. Elements in C3-HLAC features calculated by (2). White
grids are excluded since they are redundant.

q3(ai) =
∑
x∈V

f(x) fT (x+ ai) (i = 0, . . . 12). (3)

Note that the number of choices for ai is 13, which is half
of the 26 neighbors in a 3 × 3 × 3 grid, since each pair
of symmetric ai give the same correlation after summing
over the entire grid. The matrix computed by Eq. (3) is
expanded into a column vector with 36 elements. There-
fore, the dimension of the vector calculated by Eq. (1) is
6, while that calculated by Eq. (3) is 468 (=36 · 13). The
second part of the C3-HLAC descriptor is computed from
the binarized values of r(x), g(x) and b(x). To determine
the threshold of color binarization, we apply the histogram
threshold selection method [21] to the R, G and B values
respectively, using the voxel colors of all the objects in the
database as sample data. The C3-HLAC features calculated
by Eq. (2) include redundant elements, such as r(x) · g(x)
and g(x) · r(x). Excluding the redundant elements, the di-
mension is 12 if color values are binarized, and 21 otherwise
(see Figure 2). Finally a full C3-HLAC vector is obtained
by concatenating the two vectors from the binarized color
voxel data and the original color voxel data. As a result,
the dimension of the C3-HLAC feature vector becomes 981
(6+468+12 for non-binarized data plus 6+468+21 for bina-
rized data).

3.2. Crucial Invariance

The most significant difficulty in MIL is that there is no
clue to know which instance in a positive bag is positive.
Therefore, features that are commonly included in positive
bags but not in a negative bag should be found automat-
ically. However, features extracted from the same object
generally differ when the view point changes. To address
this problem, features should be designed to have appropri-
ate invariance against difference in view point.

First, rotation invariance is necessary to achieve robust-
ness against different position. The C3-HLAC features are
not rotation invariant as described in Section 3.1. Therefore,
we decided not to differentiate between the relative position

Figure 3. The two principal components of rotation-invariant C3-
HLAC features without scaling (left) and with scaling (right). Pos-
itive instances of an object are in green dots and negative instances
are in red dots.

of neighboring voxels ai, replacing Eq. (3) by the following
equation:

q4 =

12∑
i=0

q3(ai) =

12∑
i=0

∑
x∈V

f(x) fT (x+ ai), (4)

which reduces the dimension of the descriptor to 117
(6+36+12 for non-binarized data plus 6+36+21 for bina-
rized data).

Second, scale invariance is important for robustness
against an object’s positional changes in depth. Unlike 2D
image features, C3-HLAC features are extracted from voxel
data which are invariant to view point distance, so they al-
ready have scale invariance. However, there exists one im-
portant point. Since a C3-HLAC feature vector is obtained
by the summation of local descriptors, its norm increases as
the size of a point cluster becomes larger. The two princi-
pal components of rotation-invariant C3-HLAC features ex-
tracted from positive and negative instances of an object are
shown in the left graph in Fig. 3. The features of small point
clusters gather with high density, while those of large point
clusters exist sparsely. This causes bias, as small segments
tend to be similar to other segments while large segments
tend to differ from other segments. To avoid this problem,
we divide the feature vectors by

∑
x∈V p(x), the total num-

ber of occupied voxels in each segment. This removes the
bias but still maintains scale invariance (see the right graph
in Fig. 3).

4. 3D Point Cluster Segmentation

This section describes how to produce 3D point clusters
as candidate segments for objects. We primarily use the
geometry-based segmentation method proposed by Mozos
et al. [19]. This method follows a criterion based on the
maximum difference in angle between the surface normals.
For each point, the system calculates its normal by identify-
ing a tangent plane at the selected point, and approximating
the point’s neighborhood using a height function relative to
this plane in the form of a 2nd order bi-variate polynomial



Algorithm 1: 3D Point Cluster Segmentation

S /* input 3D scene */

l← l0 /* cluster distance threshold */

P = {p1...pm} in S /* plane detection */

R = {r1...rn} in S-P /* distance clustering */

foreach ri ∈ R do
C = {c1...cM} in ri /* normal clustering */

if M > Mmax then
l← ε ∗ l
R’ = {r′1...r′n′} in ri /* distance clustering */

R← R ∩ R’

defined in a local coordinate system [18]:

h(u,v) = c0 + c1u+ c2v + c3uv + c4u
2 + c5v

2,

where u and v are coordinates in the local coordinate sys-
tem lying on the tangent plane. To obtain the unknown co-
efficients ci, a direct weighted least squares minimization
is performed and the point is projected onto the obtained
surface. For further details, please refer to [19].

This segmentation produces small segments which can
be used as primitive segments. Next, the segments are
connected iteratively until all the segments have been con-
nected, and thus a number of hierarchical segments of var-
ious size is obtained. However, the total number of candi-
date segments tends to become too large if every combina-
tion of primitive segments is considered. Therefore, we also
use plane detection and a simpler cluster detection method
based on point distance to limit the number of candidate
segments.

The algorithm is shown in Algorithm 1. First, we esti-
mate and detect planes by RANSAC and do clustering for
the remaining points so that the distances between near-
est neighbor points among clusters becomes larger than the
threshold l = l0. The normal-based segmentation described
before is then performed for each point cluster. If the total
number of segments obtained from each point cluster M is
larger than Mmax, the point clustering is performed again
for this cluster with a smaller distance threshold εl (ε < 1).
In this paper, we set l0 to 20mm, Mmax to 300, and ε to
0.75.

5. Experiment
We evaluated the performance of object detection

learned by MIL and weakly labeled 3D color scenes, that
is, pairs of color and depth images with binary signatures
representing whether or not they contain each object.

5.1. MIL Methods

We selected two alternative MIL methods, the
Expectation-Maximization version of Diverse Density

(EM-DD) [29] and multi-instance Support Vector Ma-
chines (mi-SVM) [1]. For their implementation, we used
Jun Yang’s library MILL [12]. The details of these methods
are described below.

EM-DD

EM-DD [29] is an EM-style extension of the Diverse Den-
sity (DD) algorithm [17]. Suppose that B+

i is a positive
bag, and that the j-th instance in that bag is B+

ij . DD esti-
mates a concept point t in feature space that is close to at
least one instance in all the positive bags and is far from all
the instances in all the negative bags. By assuming that the
bags are conditionally independent given the concept point
t and applying Bayes rule, this is solved by maximizing the
following likelihood:

arg max
t

∏
i

P
(
t|B+

i

)∏
i

P
(
t|B−

i

)
.

Given that the label of a bag comes from using “logical-OR”
on the labels of its instances, P

(
t|B+

i

)
is finally estimated

(although not necessarily) by a Gaussian-like distribution,
exp

(
−‖B+

ij − t‖2
)
.

EM-DD starts with t obtained by DD as an initial guess,
and repeats E-Step, which chooses the instance most likely
to be positive from each bag, and M-Step, which updates
t. In this experiment, we executed ten trials with different
starting points and selected the one that gave the minimum
objective function, that is, the minimum likelihood of train-
ing data.

mi-SVM

Andrews et al. [1] proposed two types of MIL-setting SVM,
one for instance-level classification (mi-SVM) and the other
for bag-level classification (MI-SVM). We used mi-SVM,
which maximizes the usual instance margin jointly over the
unknown instance labels and a linear or kernelized discrim-
inant function, given below:

min{yi} minw,b,ξ
1
2‖w‖

2 + C
∑

i ξi

s.t.∀i : yi(〈w,xi〉+ b) ≥ 1− ξi, ξi ≥ 0, yi ∈ {−1, 1},

where the relationship between instance labels yi and bag
labels YI is expressed by the linear constraints∑
i∈I

yi+1

2
≥ 1,∀I s.t.YI=1, and yi=−1,∀I s.t.YI=−1.

We used a linear discriminant function in this experiment.

5.2. Database

For our training samples, we made twelve situations
where five out of twelve possible objects (see Fig. 4) were



Figure 4. Images of the twelve target objects.

put in different positions, and then color and depth images
were captured by a Kinect sensor. Ten pairs of color and
depth images per situation were captured from different
viewpoints, resulting 120 pairs of images. Note that one
pair of color and depth images corresponds to one bag in
MIL. There are 50 positive bags and 70 negative bags for
each object.

Similarly, for testing samples, we captured ten views of
each of twelve situations with five objects, but with a dif-
ferent environment than where training samples were col-
lected. Example images of training samples and testing
samples are shown in Fig. 5. The ground truth of ob-
ject location in the testing samples was given manually. If
the number of points in the output is more than 2% of the
ground truth and more than a half of the number of points
in the output are included in the ground truth, then the out-
put is regarded as true positive. Note that this judgment is
more optimistic than that usually used in object detection
(e.g. PASCAL VOC [16]). This is because, in MIL, an out-
put segment may become only a part of a whole object (e.g.
a handle of a cup), which still works for many kinds of ap-
plication. The database is available from our web site.1

5.3. Results

We compared several extensions of C3-HLAC [13] fea-
tures: (a) rotation-variant without scaling (original), (b)
rotation-invariant without scaling, (c) rotation-variant with
scaling, (d) rotation-invariant with scaling (proposed). For
(a) and (c), we compressed the feature vectors into 100 di-
mensional vectors by doing PCA and whitening, similarly
to [13]. We set the size of a voxel to 10mm × 10mm ×
10mm.

Average ROC curves when using EM-DD and mi-SVM
are shown in Fig. 8. For EM-DD, the decreasing order of
performance was (d), (c), (b) and (a), while for mi-SVM, it
became (c), (d), (b), and (a). Overall, the results with EM-
DD were higher than with mi-SVM, so we conclude that (d)
was the best choice among the alternative features.

A comparison of the average rate that the correct object
was ranked in the top q of the target scene is shown in Fig. 6.
We refer to this rate as the q-rank rate. The q-rank rate

1http://www.isi.imi.i.u-tokyo.ac.jp/software/
color_depth_dataset_with_labels.zip

Figure 6. Comparison of average q-rank rate [%] with EM-DD
(top) and mi-SVM (bottom).

Figure 7. Average q-rank rate [%] with EM-DD vs the portion of
training bags.

represents the probability that when the system outputs the
list of q candidate segments, it includes the correct object.
When we used the proposed features with EM-DD, the av-
erage rate that the system output a list of four candidates,
including the correct one, was greater than 50%.

The average q-rank rate [%] with EM-DD versus the por-
tion of the training bags is shown in Fig. 7. We changed the
number of the training bags in our database described in
Section 5.2 from 12 (10%) to 120 (100%). This indicates
that larger training data will increase the accuracy.

The results shown in Fig. 8 were not as impressive as



Figure 5. Example Images of the training scene (top two rows) and test scene (bottom two rows).

hoped, unfortunately. This was because training of some
objects completely failed by finding the wrong local min-
imum, which greatly affected the total performance. Such
failures are expected to be avoided by adding more train-
ing samples in various environments. The ROC curves
for twelve objects respectively are shown in Fig. 9. The
most successful results were given when object #4 (Fig. 4)
was targeting, which recorded almost perfectly ideal ROC
curves with both EM-DD and mi-SVM.

Some examples of object detection with the proposed
features and EM-DD are shown in Fig. 10. The one most
likely segment of each target object is shown. Successful re-
sults are shown in the middle row while failures are shown
in the bottom. Various objects in varied positions seem to
be correctly detected, while some failures are seen among
similar segments (e.g. a white cup and a part of white fan).

6. Conclusion

We have proposed a method for joint learning of object
classification and localization from weakly-labeled pairs of
color and depth images, using geometry-based segmenta-
tion, 3D color features and Multiple Instance Learning. In
this learning task, view point invariance of features and re-
moval of bias in feature space caused by variance in object
size are crucial. We showed in our experiment that rota-
tion and scale invariant features recorded the highest per-
formance.

Although a number of interesting results where the cor-

rect objects were detected in various positions in a new en-
vironment were achieved, we also had a few cases where the
training of an object completely failed, so our method has
room for improvement. We collected training samples in
one specific environment, while more samples in different
environments are expected to increase the probability that
the correct features of objects are learned. Furthermore,
more experiments to comparison to the proposed method
with the well-known Spin Image [11] and its latest features
(e.g. [26]) are required.
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