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Abstract. Metastability is a property of systems composed of many interacting parts wherein the parts
exhibit simultaneously a tendency to function autonomously (local segregation) and a tendency to
cooperate (global integration). We study anisotropically coupled map lattices and discover that for specific
values of the coupling control parameters the entire system transits to a metastable regime. We show that
this regime manifests a quasi-stable state in which the system can flexibly switch to another such state. We
briefly discuss the relevance of our findings for information processing, functional integration, metastability
in the brain, and phase transitions in complex systems.

PACS. 05.45.Ra Coupled map lattices – 64.60.My Metastable phases

In recent years, much attention has been paid to collec-
tive behavior in networks of dynamical systems [1,2]. A
large number of studies have identified different kinds
of synchronization in a broad class of natural and ar-
tificial systems (e.g., fireflies, cells, and atoms; see [3]
and references therein). Particular attention has been de-
voted to the degree of collective organization measured as
the tendency of separately operating (functionally segre-
gated) subsystems of a network to exhibit coherent (func-
tionally integrated) dynamics. Important examples are
neural assemblies which are spatially separated cortical
subsystems composed of thousands of neurons exhibit-
ing multiple time scale dynamics [4–7]. It is natural to
ask what qualitative features (control parameters) enable
emergence of global integration and local segregation in
systems with many degrees of freedom (e.g., [8–12]). More-
over, one might wonder how the individual dynamical pro-
cesses composing the whole perform their unique roles ex-
pressing their own form of information, while at the same
time being functionally connected and constrained by the
interactions with other processes. Such interplay between
functional local autonomy and coordinated global activity
is a distinguishing trait of metastability [13–15]. In such
regime, the entire system is in a state of optimal flexibil-
ity and can rapidly shift from one attractor to another
(e.g., [13]).
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In this paper, we focus our attention on the relation
between metastability and functional integration. Partic-
ularly, we investigate the conditions for such a metastable
regime to emerge in diffusively coupled map lattices of lo-
gistic maps. We extend the coupled map lattices model
(CML) [16] and consider a multi-lattice system in which
each chaotic unit is also coupled to units of other lat-
tices (see [17], for a similar extension) as it is the case
in sparse networks. We discover that the values of the
coupling strength of units to the network (diffusing coeffi-
cient or total coupling) and the coupling strength between
units belonging to the same lattice and to other lattices
(intra- and inter-lattice coupling ratio) significantly influ-
ence the occurrence of global integration and local seg-
regation. For specific combinations of the two coupling
parameters, units belonging to different lattices mutually
lock their phases while they continue to operate as special-
ized, autonomous entities. The global integrative tendency
displayed by the entire system is characterized by tem-
poral correlations between spatially remote (not directly
coupled) units. Moreover, each unit transits to a bistable
state becoming at the same time member of two or more
lattices and acquiring “novel” information processing ca-
pabilities, where the information is encoded in the phase
delays between the units.

Let f be the map that governs the dynamics of each
chaotic unit, and let xk

n(i, j) represent the activity of the
unit at lattice site (i, j) of the kth lattice at discrete time
step n. Additionally, let F k

n (i, j) be the diffusive coupling
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term between units located on lattice k (von Neumann
neighborhood of order 1):

F k
n (i, j) =

xk
n(i − 1, j) + xk

n(i + 1, j) + xk
n(i, j − 1) + xk

n(i, j+1)
4

(1)

and let Gk
n(i, j) be the coupling term between units lo-

cated on lattices k − 1 and k + 1 (Laplace neighborhood):

Gk
n(i, j) =

xk−1
n (i, j) + xk+1

n (i, j)
2

. (2)

For both coupling directions, we assume periodic bound-
ary conditions. The dynamics of unit (i, j) of lattice k at
time n + 1 is described by the following equation:

xk
n+1(i, j) = (1 − γ) fα(xk

n(i, j)) + γ ε F k
n (i, j)

+γ (1 − ε)Gk
n(i, j) (3)

where ε ∈ [0, 1] is the relative intra- and inter-lattice
coupling ratio of individual units among and between
the lattices and γ ∈ [0, 1] is the coupling strength to
the network. The multi-lattice system consists of K lat-
tices (k = 1, . . . , K) composed each of L × L chaotic
units. The local dynamics is governed by the logistic map
fα(u) = 1−αu2 which is chosen due to its rich dynamical
structure controlled by a single parameter α ∈ [0.0, 2.0].
For all numerical experiments, we consider K = 4 maps
with L = 100 units, and fix α to 2.0 for which the logis-
tic map is at its most entropic regime. Unless otherwise
specified, numerical simulations are started with random
initial conditions and last for 1000 iterations.

Our aim is to understand the relationship between the
functional characteristics of the multi-lattice responsible
for information processing and the structural character-
stics of the underlying network. We take the stance of
complex networks and analyze global integration of func-
tionally segregated groups of chaotic units. Integration
is defined as the multivariate generalization of mutual
information and captures the system’s overall deviation
from statistical independence [18–20]. It captures the total
amount of statistical dependency among a set of random
variables Xi forming elements of a system X = {xi}. Inte-
gration is defined as the difference between the individual
entropies of the elements and their joint entropy [19]. In
the case of the lattice, integration is the difference be-
tween the sum of entropies of the activity of the chaotic
units {xk

n(i, j)} and the entropy of the system considered
as a whole, X = {xk

n(1, 1), xk
n(1, 2), ...}. While the individ-

ual entropies are easily estimated through the single-point
probability pi,j(z) that xk

n(i, j) takes value z, the evalua-
tion of the entropy H(Z) of the entire lattice is nontrivial
because it requires a number of samples which grows ex-
ponentially in the size L of the lattice.

We use formulae derived in [19,21] and estimate the in-
tegration I(X) by first resampling the original time series
to yield Gaussian signal amplitudes Xg and then using the

correlation matrix COR(Xg):

I(X) =
n∑

i=1

H({xi}) − H(X) ≈ − ln(|COR(Xg)|)
2

(4)

where the correlation coefficient COR(Xg(A), Xg(B)) be-
tween two random variables A and B with mean values
μXg(A) and μXg(B) and standard deviations σXg(A) and
σXg(B) is defined as

COR(Xg(A), Xg(B)) =
E((Xg(A) − μXg(A))(Xg(B) − μXg(B)))

σXg(A)σXg(B)
.

In order to identify the modes of interaction that occur
within one lattice and among lattices, we calculate the
integration Iintra−CML in one arbitrarily chosen lattice
(all lattices are identical) and the integration Iinter−CML

between all lattices composing the multi-lattice (here, cal-
culated considering the joint activity of four lattices). Fig-
ures 1a and 1b show Iintra−CML and Iinter−CML evalu-
ated by varying the parameter ε, the coupling ratio coeffi-
cient between intra- and inter-lattices, and γ, the coupling
strength of the individual units to the network. For weak
couplings γ < 0.15, but regardless of ε, Iintra−CML ≈ 0
and Iinter−CML ≈ 0, and the chaotic units are essen-
tially independent. For 0.15 < γ < 0.45, the entire
system can undergo phase transitions. Specifically, the
transitions occur for combinations of couplings such that
6 < Iintra−CML < 10 and 6 < Iinter−CML < 10 (dashed
box in Fig. 1c). In the new regime, the chaotic units are
susceptible to cooperate with units of neighboring lattices
as well as with “in-lattice” neighbors (as we will demon-
strate with additional analysis below; see the snapshots
of the maps in Fig. 2). By further increasing γ, the ra-
tio between in-map activity and external activity switch
from multi-lattice integration for ε < 0.45 in Figure 1b
to in-lattice integration (transition roughly for ε > 0.45,
Fig. 1a). An interesting result is that global integration is
sensitive to the network organization parameter ε rather
than the behaviour of the individual units (coupling γ).
That is, a global property such as Iinter−CML is strongly
influenced by the system’s organization controlled by pa-
rameter ε. A state from which the system is able to reach
its mesoscopic scale — the scale at which the properties
of the system become independent from the behavior of
the individual units composing it, but depends only on
the network’s global structure.

To better understand how integration affects the inter-
action between the lattices, we analyze the coordination
relation of a set of units with their in-lattice neighbors
and compare it with the coordination relation with units
of neighboring lattices. The two measured collective vari-
ables are (1) the averaged phase difference Δφintra−CML

over the phase of one arbitrarily chosen unit xk
n(i, j) and

the phase of its four neighbors [e.g., xk
n(i ± 1, j ± 1)], and

(2) the averaged phase difference Δφinter−CML between
xk

n(i, j) and the two units of the neighboring lattices [e.g.,
xk±1

n (i, j)]; where the time averages are calculated over
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Fig. 1. Integration as a function of the intra/inter-lattice cou-
pling ratio ε and the coupling strength of the individuals to the
network γ. The resolution is 0.02 in the interval [0, 1]. (a) Inte-
gration Iintra−CML within one lattice (L× L; L = 100). (b) In-
tegration Iinter−CML for the multi-lattice (4× L× L units). (c)
The dashed box indicates the interval of values of Iintra−CML

and Iinter−CML for which the system is in a metastable regime.

10000 iterations. Figures 3a and 3b show the relative phase
as a function of the parameter γ, for γ ∈ [0, 0.75] and
ε = 0.75.

As evident from Figure 3, the phase relationships for
the units within the lattice and among units of distinct
lattices display different profiles as a function of γ, con-
firming that “two” processes are actually involved (i.e.,
within the lattices and among them). For small values of
the intra-lattice coupling (roughly for γ < 0.25), the lo-

Fig. 2. Snapshot pattern of the multi-lattice for {γ, ε} =
{0.42, 0.82} at time step n = 1000. A gray-scale plot is adopted
for each pixel according to xk

n(i, j). Clusters are dynamic and
evolve over time, synchronizing and desynchronizing while ex-
changing information.
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Fig. 3. Relative phase as a function of the coupling γ between
“in-lattice” neighbors, Δφintra−CML (average over 4 neigh-
bors), and between “out-of-lattice” neighbors, Δφinter−CML

(average over 2 neighbors); γ ∈ [0, 0.6] and ε = 0.75. For
γ ∈ [0.37, 0.50], the units of the four lattices tend to phase-lock
with both “in-” and “out-of-lattice” neighbors simultaneously.

cal interactions between the units are weak, small fluc-
tuations are damped and do not lead to any changes
at the system’s scale. Spontaneous global phase synchro-
nization occurs for 0.37 < γ < 0.5. In this interval,
fluctuations are amplified, the maps exhibit global sta-
bilization, and the phase difference Δφ with neighbors
in the same lattice and in neighboring lattices plateaus
(d(Δφ)/dγ ≈ 0; Figs. 3a and 3b). The individual units
transit to a bistable state and become members of the
cluster formed by local neighbors as well as members of
the cluster formed with “distant” units. Interestingly, the
activities of the individual units in each CML co-located at
the same position xn(i, j) differentiate and their dynam-
ics exhibit two distinct rhythms (indicating their biphasic
nature) (Figs. 4a to 4d). The entire system bifurcates to
a metastable regime acquiring structure at several level of
organizations.

When the chaotic maps synchronize, they exchange
energy through their phase dynamics. In this particular
biphasic state, it is of some interest to study its capabil-
ity to process information acquired through an external
input. To do so, we modify the equation governing the lo-
cal dynamics of the lattice at site (i, j) by coupling it to
an external input sn(i, j). By including this new informa-
tion source, the equation of the inter-lattice coupling term
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Fig. 4. Metastability. Time series (left) and phase plots (right)
of four chaotic units located at the same coordinates (arbi-
trarily chosen) in one of the four coupled lattices for {γ, ε} =
{0.40, 0.75}. The four units are in-phase and exhibit bistability
as demonstrated by the presence of two limit-cycle attractors.
They present distinct but coordinated dynamics.

(Eq. (2)) for map k = 1 becomes:

G1
n(i, j) =

x4
n(i, j) + x2

n(i, j)
4

+
sn(i, j)

2
. (5)

An adequate way of estimating the qualitative aspects of
the metastable system (e.g., its plasticity) is to measure
its response to a step input. We apply a perturbation
to the system for the parameter combination {γ, ε} =
{0.42, 0.92} for which the units are sensitive to even
weak phase variations of coupled external signals. At non-
specific time instants, we perturb a row of ten units of lat-
tice k = 1 by applying a unit step function sτ (i, j) = 1τ

for a duration of τ steps. We hypothesize that because
the multi-lattice is in a “quasi-stable” state of dynamic
balance, it can flexibly switch to another such state. That
this is indeed the case is shown in Figure 5.

For instance, when the step signal sτ = 1 perturbs
the units dynamics at t = 180, the individual units devi-
ate from their original trajectories and rapidly bifurcate
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Fig. 5. Perturbation analysis. (a) Units mean response to a
step function for different duration of τ = 1, τ = 2, and τ = 3
time steps. (b) (Color online) Phase plot of the average group
response for the three cases. Each point in the figure corre-
sponds to the average over 10 units.

to a new metastable coordination relation (Fig. 5). Sim-
ilar transitions occur for the step durations τ = 2 and
τ = 3 (Fig. 5b shows the average group phase plot evolu-
tion for the three different perturbation cases). The per-
turbations applied to a small number of logistic maps af-
fect the phase of the units belonging to the same group
within the same lattice and all units start following the
same rhythm. This result demonstrates that while being
stable the entire system exhibits also plasticity being sen-
sitive to external events with high temporal precision: an
important characteristic of complex adaptive systems and
dissipative structures [14].

In conclusion, we showed that specific local rules of
interaction in chaotic maps can lead to an abrupt and
spontaneous phase transition of the entire system. The
anisotropy imposed on the couplings between the individ-
ual dynamical units leads to the coexistence of multiple
dynamic regimes (e.g., two-phase mixtures), a property
observed in many nonlinear phenomenona (e.g., liquid-
gas phase mixtures, nonlinear optics, or in nonequilibrium
thermodynamics). This particularity enables the units to
exchange information through their phases and to adapt
to changing external constraints. External signals perturb
the coordination between the units and modify their phase
relations. As a result, information can be encoded as a
phase delay between the units as it is done in phase-locked
loop networks [22]. Hence, the system’s behavior evolves
through the complex interplay of function, structure, and
fluctuations — a characteristic of dissipative systems. In
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neurobiology, this relates to the hypothesis that metasta-
bility and functional integration within and among spe-
cialized areas of the brain is mediated by effective con-
nectivity [23]. A region of the brain is not perfectly de-
lineated and may function autonomously for a moment,
but strongly depend on input from other regions in the
next moment, shifting between local activity and long-
range coordination. This leads to a constant interplay be-
tween local and global synchrony exhibiting coherence and
plasticity in neural activity. Such interplay between sta-
bility and plasticity is a necessary condition for adaptive
behavior while maintaining an overall robustness in re-
sponse to changing environment [14].

Plastic changes may be controlled through value sys-
tems capable of influencing the coupling between distinct
maps in presence of changes in salient sensory stimulation,
analogous to the neuromodulatory system [24]. More pre-
cisely, the global parameters pair {ε, γ} play a role anal-
ogous to ascendant neuro-modulators, which favor or dis-
miss attentional blink or attentional access by modifying
the connectivity and the functional property of the brain
system. In our model, a global parameter can modify the
geometry of the system and its functional connectivity
when passing a critical threshold. Thus, it might be in-
teresting for a system to work near this critical area in
order to rapidly switch between computational capabil-
ities or inhibitory mode. Hence in the brain, for a crit-
ical threshold, the ascending chemical neuromodulators
are responsible for the synchronous activation of large
neural ensembles producing multi-band frequencies oscil-
lations [25]. Our results have to be compared with other
studies investigating the dynamical organization in clus-
tered neural networks (cf. [10–12]). These studies point out
on the importance of network organization in a scale-free
system showing efficiency for instance of small-world net-
work class of complex systems to form plastic hierarchies.
In our experiment, efficient organization of the network
corresponds to high intra- and inter-maps integration. In
future work, we will study whether these characteristics
are related or not and whether they are encountered in
other type of networks (e.g., spiking neural network [26]).

We would like to thank the JST ERATO project for the sup-
port to this research and the two anonymous reviewers for their
valuable comments.
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