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Abstract

Synchronization is the dynamic adjustment
of rhythms of oscillating systems. The ques-
tion arises of whether the complex patterns
emerging from the interaction of an embod-
ied system’s internal and external dynamics
can be explained and quantified in terms of
synchronization. Taking an information the-
oretical stance, we make the assumption that
synchronization between coupled dynamical
systems provides a powerful adaptive mech-
anism to receive, encode, and store external
events into a system’s internal dynamics. We
illustrate our ideas with two simulation ex-
periments: a system composed of two bidi-
rectionally coupled chaotic map lattices, and
an embodied system composed of a body and
two coupled map lattices. We show how in
both model systems a framework based on
synchronization can smoothly integrate sens-
ing and acting, and learn simple sensorimotor
patterns without the need to postulate any
a priori learning scheme. In the light of our
results, we discuss the potential link between
synchronization and the emergence and devel-
opment of communication and imitation.

1. Introduction

Synchronization is the adjustment of two or more
coupled systems to each other to give rise to some
common dynamical behavior. Such behavior can
result from either coupling the systems or by
forcing them through a common external signal.
Synchronization is such a pervasive phenomenon
that it is studied in a wide range of research
fields (Pikovsky et al., 2001, Strogatz, 2003). In
brain science, appropriate synchronization is hy-
pothesized to play an important role as a supporting
mechanism for various modes of reciprocal (short
and long-range) interaction between different brain
regions, for perceptual and temporal binding, and as
a necessary condition for the emergence of percep-

tual and conscious states (Roelfsema et al., 1997,
Varela et al., 2001, Tsuda et al., 2004). In develop-
mental psychology and psychophysics it is suggested
that in infants the contingency (or, synchrony) be-
tween different sensory and motor channels may be
a crucial aspect of the development of social cogni-
tion (Nadel et al., 2005, Prince and Hollich, 2005).
Also, synchronization may be exploited to im-
prove communication between humans and
robots (Breazeal, 2002), or to enable a more efficient
exploration of the sensorimotor space of embodied
systems (Lungarella and Berthouze, 2002).

In this paper, we suggest to go one step further
and use synchronization as a basic nonlinear mech-
anism to drive the learning of sensorimotor patterns
and skills, and the development of communication
and imitation. Synchronization may give a unitary,
coherent, and hopefully formal view on how humans
learn from and gradually mature with their own ex-
periences. We start by giving some background on
the notion of phase synchronization, a particular
kind of synchronization which assesses the relation
between the temporal structures of measured signals
(typically, phases) regardless of their amplitudes. We
then describe the methods used in this paper to de-
tect synchronized states. By studying a system of
coupled chaotic maps we show how while at synchro-
nization such maps can exchange and store informa-
tion, they are not able to do so when they are not
synchronized. We proceed by studying an embodied
system realized as a simulated humanoid robot, and
show how externally imposed dynamics can affect its
internal dynamics. Finally, we address the question
of how to link synchronization and cognition, dis-
cuss the possibility to formalize semantic higher-level
concepts relevant to psychology (e.g. memory, com-
munication, and imitation) with the tools of physics,
and point to some avenues worth exploring.

2. Phase Synchronization

In this section we first give an overview of synchro-
nization and then introduce the methods used.



2.1 Background

Quite a few relevant applications of coupled non-
linear dynamical systems exists: excitable systems
used for pattern detection (Baier and Muller, 2004),
chaotic communication channels employed to trans-
fer and encrypt information (Hayes et al., 1994),
master-slave (driver-response) systems which can act
as memories or ”knowledge” predictors (Voss, 2000,
Calvo et al., 2004). In all these applications, the
coupling of two nonlinear systems (continuous or
discrete) creates a communication channel along
which information can flow (Hayes et al., 1994).
It can be shown that the information flow-
ing along the channel is proportional to the
level of synchronization between the linked sys-
tems (Baptista and Kurths, 2005). For particular
values of the coupling between the systems, the com-
munication channel behaves poorly, that is, some
parts of the information are transferred while other
parts are lost or absorbed by the systems’ subcom-
ponents. What may be a drawback for communi-
cation can be of actual relevance from the point of
view of embodied systems. As we hope to show in
this paper, synchronization between coupled dynam-
ical systems provides in fact a powerful mechanism
to receive, encode, and embed external events into
a system’s internal dynamics. The balance between
plasticity and stability of the system, and the ability
to embed or to ignore external events is directly re-
lated to the amount of coupling between brain, body,
and environment.

From a physical point of view, the coupling be-
tween two or more nonlinear (but active) systems
(e.g. self-sustained oscillators) can be realized
through modulation of the systems’ phases and syn-
chronization (Pecora and Carroll, 1990). Phase syn-
chrony (PS) represents the counter-intuitive situa-
tion during which the phase of the coupled systems
are locked, but their amplitudes are uncorrelated. In
other words, the irregularities of the amplitudes can
actually hide phase synchronization. While phase
synchronized, the system’s dynamics is integrated as
well as differentiated. The ”integrated” parts of the
dynamics support the exchange of information by
establishing communication channels between them,
while the ”differentiated” parts do not exchange any
information. In this particular situation (denoted
by [γPS−, γPS+] in Fig. 1), both systems are flexibly
coupled to each other and sustain a common rhythm.

Note that synchronization is not equivalent to res-
onance. Two coupled systems at resonance are not
necessarily synchronized. Resonance is a response
of a system that is non-active, i.e. demonstrates no
oscillations without external forcing. Synchroniza-
tion and resonance can be discerned by switching
off or reducing the driving force and by observing if
the rhythms disappear or not. In the case of reso-

Figure 1: Phase synchronization and modulation.

nance, some of the oscillations will decay after a tran-
sient. Thus, synchronization relies on the presence
of weakly coupled active systems (e.g. self-sustained
oscillators) which can function mostly (but not com-
pletely) independent from each other (cf. Fig.1).

2.2 Methods

Here we introduce the tools used to study synchro-
nization, in particular, phase synchrony: a) phase
synchronization index (Ψ); b) spectral bifurcation
diagram (SBD); and c) wavelet bifurcation diagram
(WBD).

a) Ψ: The method used to measure phase
synchronization between two coupled sys-
tems is based on the concept of instantaneous
phase (Rosenblum et al., 1996). The instantaneous
phase can be calculated as φ = arctanxH(t)

x(t) where
xH(t) is the Hilbert transform of the narrow-band
signal x(t). The condition of 1:1 phase synchroniza-
tion between two signals x1(t) and x2(t) is that the
difference between their phases ∆φ(t) = φ1(t)−φ2(t)
stays bounded, whereas for unsynchronized states
it corresponds to an unbounded growth of ∆φ(t).1

In other words, two systems are synchronized if
|∆φ(t)| < C where C is a constant. Given this
definition of synchronization, we can define the
phase synchronization index as:

Ψ =
√

< cos∆φ(t) >2
t + < sin∆φ(t) >2

t (1)

where < . >t denotes the temporal average. If the
signals x1(t) and x2(t) are phase synchronized Ψ = 1
(which indicates a constant phase difference). For a
uniformly distributed phase difference (that is, no
synchronization) Ψ = 0.

b) SBD: In order to investigate qualita-
tive changes of dynamics in high-dimensional
systems, we use the spectral bifurcation dia-
gram (Orrel and Smith, 2003). Essentially, SBD
displays the power density spectrum of multiple

1A more general definition includes rational relationship
between the phases: |nφ1−mφ2| where n and m are arbitrary
integers.



system variables as a function of a system control pa-
rameter (e.g. force, temperature, coupling strength)
(the power spectra of the individual variables are
superposed). This method allows identification of
resonant states characterized by sharp frequency
components, chaotic states having rather broad
power spectra, as well as bifurcations, that is,
qualitative changes in the system’s behavior (phase
transitions from one state attractor to another).

c) WBD: Because we are interested in understand-
ing the spatial correlations between coupled dynam-
ical systems (e.g. neural units), as well as correla-
tions at different spatio-temporal scales, we also used
the wavelet bifurcation diagram (Pitti et al., 2006).
This measure based on the wavelet transform spans
frequency, time, and the index of the time series an-
alyzed, and allows visualization of spatio-temporal
patterns, bifurcations and chaotic itinerancy at dif-
ferent scales for a high dimensional system. It can
be conceptualized as a multi-resolution tool for the
analysis of multi-variate time series.

3. Experimental Studies

To illustrate our ideas we investigate two model sys-
tems: a system composed of two bidirectionally cou-
pled chaotic map lattices (CML), and an embodied
system consisting of a body which is bidirectionally
coupled to two CMLs. A CML is a dynamical system
with discrete time, discrete space, but a continuous
state. It consists of L coupled dynamical units which
typically exhibit nonlinear dynamics. In this paper
for the dynamical units we choose the logistic map:

f(z) = 1− αz2. (2)

The behavior (chaoticity) of the chaotic map f(z) is
controlled by the parameter α ∈ [0, 2] (identical for
all units). The amplitude of the map varies between
[−1, 1]. All units are connected to their two nearest
neighbors and to an external input (e.g. sensor feed-
back) whose amplitude is normalized between [−1, 1]
by a coupling γ ∈ [0, 1] (external coupling).

3.1 Coupled chaotic maps

As a first example, we study phase synchronization
in two bidirectionally coupled CMLs xn(i) and yn(i)
consisting of L = 32 chaotic units each. The coupled
system’s behavior is expressed as:

xn(i + 1) = (1− γ) f(xn(i)) + γ
2 (xint

n (i) + xext
n (i))

yn(i + 1) = (1− γ) f(yn(i)) + γ
2 (yint

n (i) + yext
n (i))

with

xint
n (i) = (xn−1(i) + xn+1(i))/2

yint
n (i) = (yn−1(i) + yn+1(i))/2

xext
n (i) = yn(i)

yext
n (i) = xn(i)

(3)

Figure 2: Phase synchronization index CML 1 - CML 2.

Black continuous line: average of Ψ over 32 neural units;

gray dashed line: standard deviation.

where n is a discrete time step and i ∈ [1, 32] is the
index of the ith chaotic unit; xint, yint, and xext, yext

are the internal and external couplings respectively.
Depending on the coupling parameter γ, the two

coupled CMLs may or may not produce sustained
oscillations. In this experiment we vary the cou-
pling parameter γ between [0, 0.6] and observe the
coupled system’s behavior after perturbing the first
CML with an arbitrary signal sn(i) ∈ [−1, 1] (the
second CML yn(i) is not externally perturbed). Ac-
cordingly, the equation governing the dynamics of
the first CML is modified as follows:

xext
n (i) = (yn(i) + sn(i))/2. (4)

The experiments are conducted with N = 100000
samples. By analyzing the outcome of the experi-
ments in the spectral domain and in the phase space,
we can better understand the structure of the inter-
actions and their time evolution. The phase synchro-
nization index Ψ between the two coupled CMLs is
plotted in Fig. 2. The black continuous line denotes
the average of Ψ calculated over all 32 units, the
gray dashed lines indicate the standard deviation.
At phase synchronization (PS) the standard devia-
tion is rather large indicating flexibility of the sys-
tem to assume different states. The evolution over
time of the probability distribution of a representa-
tive neural unit for different values of γ is displayed
in Fig. 3. As evident from both figures, for this par-
ticular system, PS occurs in two intervals for γ in
[0.15, 0.18] and [0.27, 0.37] characterized by a high
level of synchronization and a high variability. In
the subsequent analysis, we focus our study on the
interval [0.15, 0.18].

Below a certain value of the external coupling con-
stant γ < γPS− = 0.15, Ψ ≈ 0.5, and we do not
observe any synchronization between the two CMLs
(Fig. 2). Both systems are uncoupled, and their dy-
namics is unconstrained and independent from each
other (Fig. 3 a). The information fed to the system
through the external perturbation sn is absorbed by



the first CML’s dynamics and there is no exchange
of information between the two maps.

At PS, for γ = γPS− the two systems begin to
interact. Both systems are weakly coupled and syn-
chronized and Ψ ≈ 0.5. The two systems form a
weak communication channel and their phases as-
sume values so that information can transit from one
system to the other. External information can now
flow through the first CML and, at least partially,
influence the state of the second CML (see Figs. 3 b
and c). Because the two systems reciprocally affect
each other, some information can be stored in the
coupled system’s dynamics.

For γ ∈ [γPS− , γPS+ ], the amount of information
exchanged is proportional to the coupling γ. As indi-
cated by the probability distributions, the difference
between parts of the dynamics of the two systems
increases (differentiation) while at the same time the
external information tends to intergrate other parts
(integration). At PS the systems are able to trade-off
plasticity and stability, that is, they are able to react
adaptively to external perturbations while maintain-
ing their own intrinsic dynamics.

For γ > γPS+ = 0.23, the dynamics of both sys-
tems are fully coupled and they behave as one unique
system. The two systems are completely synchro-
nized and information is transmitted with a higher
accuracy and with less loss through the established
channel and less flexibility (Fig. 3 e).

These results suggest that phase synchronized sys-
tems are characterized by stability and plasticity.
They also explain how information is exchanged and
stored independently of the internal structure of the
coupled systems and of the nature of the information.

3.2 Embodied system

Our second experimental system is a simulated hu-
manoid robot realized with the Novodex graphics
engine of Aegia (”http://www.aegia.com”). We use
four of its mechanical degrees of freedom (two elbows
and two knees) all of which are connected to two
coupled CMLs using Eq. 3 (see Fig. 4). Both CMLs
consist of L = 32 coupled logistic maps (α = 2.0).
The first lattice receives inputs from the angular
sensors (chaotic units i = 5, 13, 21 and 29) form-
ing the system ”body-CML 1”. The units with the
same index of the second lattice (with outputs nor-
malized between [-1,1]) are connected to the actua-
tors, forming the system ”CML 2-body”. To extract
the phase embedded in the chaotic signal the out-
put is filtered with a mexican-hat wavelet expressed
as: F body

i (n) = mexha(yi(n)), where mexha(x) =
2√
3a

π−1/4(1− x2)e
−x2

2 , with a being the scale of the
wavelet (a = 64 for our application). Our model sys-
tem consists of two active oscillating systems (”body-

a)

b)

c)

d)

e)

Figure 3: Probability distribution as a function of time

for representative neural unit. Left column: CML 1; right

column: CML 2. Increasing the coupling γ increases the

influence of external input on systems’ internal dynamics.

The coupling constants are: γ = 0.10 (a); γ = γPS− =

0.15 (b); γ = 0.16 (c); γ = γPS+ = 0.18 (d); γ = 0.23

(e).

CML1” and ”CML 2-body”) and hence satisfies the
minimal requirement for displaying phase synchro-
nized states. The sampling time is 2.4 ms.

3.2.1 Varying the coupling parameter

As in the previous section, we analyze the synchro-
nization level between the two CMLs by varying the
coupling parameter γ. We plot the phase synchro-
nization index and the corresponding spectral bifur-
cation diagram of the CMLs (Fig. 5) for γ ∈ [0, 0.60].
For this model system, phase synchronization oc-
curs for several intervals γ – specifically [0.15, 0.18],
[0.23, 0.27] and [0.28, 0.41]. In the subsequent analy-
sis, we focus on the interval [0.15, 0.18].



Figure 4: Outline of our embodied model system. ”Body-

CML 1” and ”CML2-body” form two self-sustained os-

cillators.

For γ < γPS− = 0.15, the chaotic units composing
the CMLs are characterized by broadband spectral
distribution with no well-pronounced peaks. We ob-
serve rapid movements of arms and legs with small
amplitudes. When perturbed (e.g. through touch),
the body’s limbs oppose only weak resistance; the
external dynamics has no influence on the internal
dynamics. There is some interaction but definitely
no synchronization between the body and the neural
dynamics, and each system acts independently.

For γ ∈ [0.15, 0.18], PS occurs between the body
and the neural system. The spectral dynamics is now
narrow-band and characterized by a few significant
peaks (i.e. a dimension reduction of the global sys-
tem dynamics occurs). Both dynamics are now cor-
related and mutually integrated through the phase
(condition of phase-locking). In analogy with the in-
formation theoretic framework discussed previously,
a communication channel between body and neural
system is established through which information can
be exchanged. In this situation, touching or ma-
nipulating the limbs externally affects the internal
dynamics of the system. After releasing the force
applied to the limbs, the system is for some time
able to reproduce the previously imposed movement
(see also the following subsection). Because the two
CMLs are synchronized, it is possible to link inter-
nal and external dynamics, and embed externally im-
posed sensorimotor patterns through phase modula-
tion.

Beyond phase synchronization (0.23 > γ > 0.18 =
γPS+), the level of synchronization between the two
CMLs increases and their dynamics becomes more
uniform. Information is exchanged between the two
systems but is not embedded.

Figure 5: Embodied setup – variable γ. Top: Phase syn-

chronization index vs. coupling γ for CML 1 - CML 2.

Center: Spectral bifurcation diagram for CML 1. Bot-

tom: Spectral bifurcation diagram for CML 2.

3.2.2 At phase synchronization

In this section, we analyze the behavior of the em-
bodied system for coupling parameter γ = 0.15, that
is, body, CML1 and CML 2 are weakly coupled and
phase synchronized.

For γ = 0.15 the system is active, sensitive to ex-
ternal oscillations, and able to embed and sustain
them in its internal dynamics. By forcing the body’s
limbs to follow particular movements, we can influ-
ence the systems’s internal dynamics and store ex-
ternally applied movements. As a result, the system
can partially learn and reproduce the imposed move-
ments. If the movement is blocked (e.g. by an obsta-
cle or an external force), then the behavior flexibly
adapts to the new boundary condition. To analyze
the internal organization of the systems, we plot the
phase synchronization index Ψ for the system com-
posed of CML 1 - CML 2 (Fig. 6 top). The activity



of the joint angle sensor in the elbow is displayed in
Fig. 6 center (the dashed line is the imposed pattern,
the continuous line is the pattern at the output of the
system). To show that patterns are actually stored
and reproduced, we also plot the output for the case
γ = 0.40 (strong synchronization; Fig. 6 bottom).

The large variance of Ψ around 0.5 suggests readi-
ness of the system to react to different sensorimotor
patterns – it allows exchanges of information and
the mutual adaptation of rhythms of CML1 and
CML2. The oscillatory fluctuations of Ψ point to
periods of synchronization (high values), synchro-
nization breaks (low values), and resynchronization.
To better understand the underlying dynamics, we
compute the wavelet bifurcation diagram for the two
CMLs (Fig. 7). Low scales (high frequencies) em-
phasize the local variabilities while high scales (low
frequencies) express the global structure of the sys-
tem. We can also observe chaotic itinerancy in the
two CMLs for time scales higher than 3 (Fig. 7 c).
For these time scales the dynamics of the clusters are
similar, that is, synchronization occurs but is ”itiner-
ant” and characterized by instabilities which produce
a transitory behavior between attractor states, and
the appearance and disappearance of phase-related
synchronizations. The near-zero Lyapunov expo-
nents of the time series indicate that the system is
effectively in a state of chaotic itinerancy and phase
synchronization (Fig. 8) (Tsuda et al., 2004).

The synchronization break (t = 6500 ms; Fig. 7) is
explained as follows: the externally imposed move-
ment is ”forced” upon the internal systems and
the previous patterns are (at least partially) de-
stroyed. When resynchronization occurs, patches of
synchronous but decaying neural activity can be ob-
served.

4. Discussion

Synchronization is the adaptation of rhythms of cou-
pled oscillators. Using a disembodied and an embod-
ied setup we have shown how at synchronization in-
dividual (internal) and environmental (external) dy-
namics can be coupled more efficiently, e.g. exter-
nally imposed sensorimotor patterns are transferred
and stored more easily internally. This result points
to an important role of phase synchronization for se-
lective attentional processes: selection of sensorimo-
tor patterns is achieved dynamically through modu-
lation of phases between the coupled systems. More-
over, depending on the system’s current dynamics
and on the amount of coupling between internal and
external dynamics, filtered external signals can per-
sist for more or less time (patches of synchronous,
persistent, but decaying neural activity are shown
in Fig. 7) and the neural system can function as
either a short-term or a long-term memory. Such
persistence is related to the idea of perceptual con-

Figure 6: Embodied setup – fixed γ. Top: Phase synchro-

nization index vs. time; coupling between CML1 and

CML 2 fixed to γ = 0.15. Center: Input-output joint an-

gle activity (elbow) at phase synchronization (γ = 0.15).

Bottom: Input-output angle activity (elbow) for highly

synchronized systems (γ = 0.40).

tinuity (Hock et al., 2003), that is, of coherent and
stable perception despite disruption by environmen-
tal perturbations or noise. The interaction between
internal and external dynamics is reciprocal. If the
brain and body-environment are adequately coupled,
stable behavioral patterns such as walking or running
could emerge despite perturbations or noisy signals
(because (PS) occurs regardless of the amplitude of
the signal), and yield complex emergent dynamics
(because (PS) is a general mechanism independent
of the movement patterns’s complexity).

Phase synchronization between the neural units
and phase transitions are also exhibited by sev-
eral models of memory dynamics (Tsuda et al., 2004,
Raffone and van Leeuwen, 2003). Adaptive Reso-
nance Theory is also related to the notion of synchro-



a)

b)

c)

d)

e)

Figure 7: Wavelet bifurcation diagrams. Left column:

CML 1; right column: CML 2. The scales are s=1 (a),

s=2 (b), s=3 (c), s=5 (d), s=10 (e).

Figure 8: Fluctuations of the largest Lyapunov exponent.

nization (Grossberg, 2005). Specifically, at phase
synchronization there is a trade-off between stabil-
ity and plasticity, that is, the neural system learns
quickly novel patterns (plasticity) without forgetting
catastrophically past knowledge (stability or persis-

tence). Grossberg further suggests that all conscious
states in the brain are resonant states, and that these
resonant states trigger learning of sensory and cogni-
tive representations. It might be worthwhile to gen-
eralize these results in an embodied viewpoint and
justify them from a physical and information theo-
retical point of view (as attempted in this paper).

As synchronization is the physically-based adap-
tation of systems rhythms, it can also be concep-
tualized as an adaptive learning mechanism which
neither makes any a priori assumptions nor uses
any specific learning scheme. We hypothesize that
synchronization may actually allow a reinterpreta-
tion of Hebb’s law: ”Neurons that fire together,
wire together” may be re-formulated as ”neurons
that synchronize, wire together”. We suggest that
two synchronized nonlinear oscillators, even if only
weakly coupled (that is, potentially physically dis-
connected), can actually ”wire” together, i.e. ex-
change information.

In the context of social interaction, the no-
tion of synchronization (or synchrony, resonance,
social entrainment or regulation) has been al-
ready introduced as a concept (e.g. (Breazeal, 2002,
Nadel et al., 2005)). We hypothesize that phase syn-
chronization may also shed some light on the mech-
anisms underlying social interaction, and may help
formalize and explain high-level semantic concepts
such as self-agency and resonance, coupling and au-
tonomy (e.g. language, communication or their dys-
functionment like autism).

It is also interesting to consider coupled systems
in the context of cause-effect relationships. Since the
first observation of anticipation of synchronization in
a physical system (Voss, 2000), it has been shown
that at PS, one of the two coupled systems can an-
ticipate the state of the other (Calvo et al., 2004).
As the systems act together, it follows that the
effect may actually precede its cause. From this
result, we can imply that for a particular sys-
tem it might be necessary to revise the notion
of unidirectional relationship between causality and
time (Prigogine, 1980). It also follows that synchro-
nization can stand for the design of a physically-
based and dynamical predictive model and for a
memory model.

Before concluding, we would like to point out
that phase as used here is a dubious concept
for discrete time systems and can in general
only be introduced for continuous dynamical sys-
tems (Rosenblum et al., 2001). The reason is that
phase can be only defined for systems having zero
Lyapunov exponents. As evident from Fig. 8,
the results obtained with coupled logistic maps ex-
hibited intermittent near-zero Lyapunov exponents
which are characteristic of chaotic itinerancy but
which weakly violate the strict definition of phase



given in (Rosenblum et al., 2001). Recent work on
phase synchronization, however, seems to confirm
our observations, and that is, phase can be also de-
fined for discrete systems (at least in particular in-
stances) (Koronovski et al., 2005). Our results seem
to indicate that the framework described in this pa-
per can be actually used for discrete time systems.
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