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1 Introduction

The ability to adaptively move in complex environment
is a key skills for robots as well as animals. It is now in-
creasingly recognized the essential contribution of bodies
to such adaptive skills by saving computational resources
in nervous system. Recently, soft-bodied robots have been
developed and have performed complex and adaptive mo-
tor behaviors by exploiting physical properties of their bod-
ies. For example, a soft robot consisting of only elastomeric
polymers achieves navigation of a difficult obstacle [1]. Al-
though accumulating studies have shown that soft-bodied
robots are useful for producing adaptive locomotion, almost
all of these robots are controlled by hand tuning or simple
cyclic input [2]. This is partially because soft-bodied robots
have hysteresis and/or non-linear properties.

In contrast, there are many studies about design and con-
trol methods of locomotor behaviors for rigid-bodied robots.
A special attention has been focused on the central pattern
generators (CPGs), i.e. neural circuits capable of generating
coordinated rhythmic motor patterns and many researchers
have applied them into robots. For instance, the dog-like
Tekken series accomplish stable locomotion using couplings
between CPGs and sensory feedbacks [3] whereas the sala-
mander robot autonomously modulate locomotor patterns
from walking to swimming according to change in environ-
ment [4]. However, online generation of substantially new
locomotor behaviors is difficult because CPGs require much
time to adjust parameters. On the other hand, there are sev-
eral studies focusing on online motor generations in a self-
explorative manner, for examples, by exploiting the chaotic
properties [5] or maximizing predictive information [6]. Es-
pecially, approach with maximizing information has been
shown usefulness for complex system with non-linear and
hysteresis.

In this paper, we applied control based on information
maximization to soft-bodied robots. We examine whether
this information-based control can be applied using com-
puter simulations and robot experiments.

2 Methods & Materials

To achieve emergent exploration of locomotion patterns
for soft robots, we developed a robot control system with
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Figure 1: System diagram.

a mechanism of information measure maximization (Fig.
1). We employ an algorithm which maximizes mutual in-
formation between the past and the future of sensory time-
series data. The system is connected to the robot with suffi-
cient number of sensors so that the whole system can form
sensory-motor loop for emergent behaviors.

2.1 Controller for Generating Motions
We chose a time-local predictive information (TiPI) [7]

as the information measure for the emergent exploration.
The TiPI increases entropy of sensory time-series data and
makes the successive time steps more dependent. This
means that the robot is controlled to obtain various sensor
values while improving prediction. In consequence of this
mechanism, the system is suited for the self-organized ex-
ploration of numerous motions.

TiPI is defined as conditioned mutual information as

Iτ(St+1;St) := I(St+1;St |st − τ) (1)

where St is the probability density distribution at step t and
τ = 1. In order to obtain the probability density distribution
St+1 and St , we used the st+1 and st that is predicted based
on st−1 and including a Gaussian noise. The control system
consists of a sensory-motor map and a predictor whose pa-
rameters are updated according to the maximization of TiPI
with gradient method. The sensory-motor mapping K and
the predictor ϕ are defined as

at+1 = K(st) = g(Cst + h) (2)
ŝt+1 = ϕ(at) = Tat + b (3)

where the vector st is sensor value, vector at is motor com-
mand, matrices C, T and vectors h, b are the parameters
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Figure 2: Overview of all tested robot system. (A) Non bioin-
spired robot, (B) Legged robot. (C) Inchworm like
robot. (D, E) Developed soft-body robot made of sil-
icon rubber with one acceleration sensor (D) and three
bend sensors (E).

updated according to TiPI maximization and g is a mapping
that satisfies gi(z) = tanh(zi). Further details are on [7]. We
used sensors that can reflect the gross state of the robot, such
as velocity sensor and acceleration sensor. All of the actu-
ators work to increase the entropy of the sensors so that the
system can generate systemic coordinated motions.

2.2 Soft Robots
We use a voxel-based physical simulator VoxCAD for

modeling soft robots [8]. The model in the VoxCAD is rep-
resented by a set of passive and active voxels with config-
urable material properties. We can control the inflation and
deflation of a group of voxels by changing the natural length
of the sides. For the experiments, we made a three soft robot
models: a non bio-inspired robot, a legged robot, and an
inchworm like robot (Fig. 2 (A) (B) (C)). The robots consist
of 62, 73, and 72 voxels, respectively. We use different ma-
terial properties for different colored group of voxels. For
example in the inchworm like robot, the top layer is consists
of three cells that is independently controlled as an actuator.
The lower layer is made of deformable but passive material.
The control system receives both motor outputs and sensory
inputs from the robot. The motor outputs of the robot mod-
els are sizes of each cell. The sensory inputs are three-axis
acceleration of the center of gravity and the strains of each
cell. Control interval is 2,000 ms.

We also developed a real soft-bodied robot made of sil-
icone rubber. The shape followed the inchworm-like soft
robot in the simulation (Fig. 2 (D) (E)). We implement de-
formable voxels by pneumatic inflation. Since the robot is a
single piece of silicone rubber, we change the material prop-
erties by embedding a sheet of cloth for the passive layer.
The lower surface of the robot is covered with plastic sheet
to prevent from sticking on the floor. Thus, the motion capa-
bility is similar to the soft robot in simulation. We controlled
the flow of air by a small electric pump and solenoid valves.
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Figure 3: Examples of generated patterns.
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Figure 4: Time evolution of TiPI and locomotion patterns in the
experiment of developed soft-body robot.

The motor outputs are calculated sizes of each cell. The sen-
sory inputs are obtained from an acceleration sensor on the
center, and bending sensors on the lower surface. Control
interval is 2,000 ms.

3 Experiments & Results

In order to examine the proposed control method that
is based on the maximization of TiPI, we conducted com-
puter simulations and robot experiments. We applied TiPI
maximization to the several robot models and recorded the
emergent motions. Then, extracted periodic motions were
analyzed in terms of mean travel distances and mutual in-
formation.

3.1 Soft Robot Simulation
In the simulation, we put the inchworm like robot on the

level ground. The robot has three segments with volumetric
deformation and an elastic backing structure. All the emer-
gent periodic motions are extracted from a total of 400 sec
(200 control steps) exploration. We observed six periodic
motions that were repeated more than one time (Fig. 3).
Their cycle were from three to eleven steps. 4 patterns out
of six can travel in a certain direction and others stay in the
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Figure 5: Mutual information and travel distance of each pattern
in simulation of VoxCAD.
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Figure 6: Relationship between motor patterns and mutual infor-
mation.

same place. We also observed that the control method can
discover both symmetric motions with synchronous defor-
mation in all active segments, and asymmetric motions with
wavelike deformation.

3.2 Soft-bodied Real Robot
We conducted the same experiment with the silicone-

based real robot. We put the robot on the level ground same
as the simulation. The robot is driven by pneumatic de-
formation via cables. The experiment was conducted for
300 sec (150 control steps). The control system could dis-
cover three patterns of periodic motions with increase of
TiPI (Fig. 4). The results show that the control method is
applicable to real robot that has nonlinear deformations.

3.3 Analysis of Locomotion with Mutual Information
We compared the emerged six patterns in the simulation

experiment in terms of the travel distances and the mutual
information between sensory inputs and motor outputs. We
found that the motion patterns with large mutual informa-
tion have large mean travel distance though the converse is
not true (Fig. 5). This result suggests that information maxi-
mization of sensory-motor information can be useful for the
exploration of the locomotion patterns. We conducted the
same analysis on the measurement of the real robot exper-
iment. We used manually designed two motion patterns:
travels in specific direction, and stays in one place. As a
result, the pattern with large traveling has higher mutual in-
formation than the one that stays, which is consistent with
the result of the simulation (Fig. 6).

4 Discussion

In our computer simulations and robot experiments,
soft-bodied robots produced several locomotor patterns in
a self-organized fashion. Our results suggest that maximiza-
tion of predictivee information can be used in soft robots for
online generation of adaptive locomotor behaviors. In addi-
tion, we analyzed the relationship between mutual informa-
tion and traveling distance and then suggest that maximiza-
tion of sensory-motor information can lead to producing of
locomotion with no any external information such as travel-
ing distance.

In future works, we will investigate the relationship be-
tween morphology of robot bodies and emergent locomotion
patterns in more detail. Furthermore, because information
maximization have been discussed the relationship with an-
imals’ learning, for example Hebbian plasticity [7], we will
compare the process that animals learn locomotor behaviors.

Acknowledgements

This work has been supported in part by JSPS Grant-in-
Aid for Scientific Research(A) 26240039.

References
[1] Shepherd, R. F. et al., “Multigait soft robot,” Proc Natl Acad Sci
USA, vol. 108, no. 51, pp. 20 400–20 403, 2011.
[2] Seok, S. et al., “Peristaltic locomotion with antagonistic actuators
in soft robotics,” in IEEE Int Conf Robot Autom, 2010, pp. 1228–1233.
[3] Fukuoka, Y. et al., “Adaptive dynamic walking of a quadruped
robot ’Tekken’ on irregular terrain using a neural system model,” in IEEE
Int Conf Robot Autom, vol. 2, 2003, pp. 2037–2042.
[4] Ijspeert, A. J. et al., “From swimming to walking with a salamander
robot driven by a spinal cord model,” Science, vol. 315, no. 5817, pp. 1416–
1420, 2007.
[5] Yamada, Y. et al., “Neural-body coupling for emergent locomotion:
A musculoskeletal quadruped robot with spinobulbar model,” in IEEE Int
Conf Robot Syst, 2011, pp. 1499–1506.
[6] Martius, G. et al., “Self-exploration of the stumpy robot with pre-
dictive information maximization,” in From Animals to Animats 13, ser.
Lecture Notes in Computer Science, del Pobil, A. et al., Eds. Springer
International Publishing, 2014, vol. 8575, pp. 32–42.
[7] Martius, G., Der, R., and Ay, N., “Information driven self-
organization of complex robotic behaviors,” PLoS One, vol. 8, no. 5, p.
e63400, 2013.
[8] Hiller, J. D. and Lipson, H., “Dynamic simulation of soft heteroge-
neous objects,” CoRR, vol. abs/1212.2845, 2012.


