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Abstract

Accurate intrinsic camera calibration is essential to any computer vision task that
involves image based measurements. Given its crucial role with respect to precision, a
large number of approaches have been proposed over the last decades. Despite this rich
literature, steady advancements in imaging hardware regularly push forward the need
for even more accurate techniques. Some authors suggest generalizations of the camera
model itself, others propose novel designs for calibration targets or different optimization
schemas. In this paper we take a completely different route by directly addressing one
of the most overlooked problems in practical calibration scenarios. Specifically, we drop
the assumption that the target is known with enough precision and we adjust it in an
iterative way as part of the whole process. This is in fact the case with the typical target
used in most of the calibration literature, which is usually printed on paper and stitched
on a flat surface. In the experimental section we show that even with such a cheaply
crafted target it is possible to obtain a very accurate camera calibration that outperforms
those obtained with well-known standard techniques.

1 Introduction

The growing availability of cheap and accurate digital imaging devices has led to the wide
adoption of computer vision based methods in measurement applications. Typical scenarios
range from the use of a single camera for quality check on planar profiles to the adoption
of complex camera networks and structured light for precise 3D reconstructions. Crucial
to these applications is the ability to know in a very accurate fashion the relation between
physical points in the observed scene and the associated image points captured by the camera
itself. This knowledge is usually attained by defining a parametric function from R? to R?
and by supplying a technique for finding the most suitable set of parameters for a given cam-
era. The function responsible for the transformation between world and image coordinates is
usually referred to as the (direct) camera model. The procedure used to search for the correct
model parameters (with respect to some observations) is the calibration method. Obviously,
camera models and calibration methods are strongly related: basic models require less pa-
rameters that can be estimated with fewer observations and simpler optimization procedures;
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Figure 1: The strongly polarized distribution of the reprojection error with respect to target
points obtained in our calibration experiments (a) suggests that the measurements on images
were not subject to zero-mean error. On the other hand, the distribution of the error on
the image plane (b) is isotropic, assessing the good compensation of radial and tangential
distortions and the reliability of the corner detector. This supports our hypothesis that the
discrepancies are due to systematic printing errors (errors magnified by a factor of 100).

by contrast, more sophisticated models describe more accurately the optical behaviour of real
cameras and lenses, and thus are preferred when higher precision is required.

1.1 Camera model and calibration methods

In this paper we will focus on camera models based on perspective projection as they allow
for a complete Euclidean scene reconstruction. The most basic model assumes an ideal
pinhole camera characterized by a focal length f (the distance between the projective center
and the image plane) and a principal point ¢ (the intersection of the optical axis and the
image plane). Often, the focal length is separated into a horizontal (fx) and vertical (fy)
component in order to correct any possible non-squareness of the sensor elements. In real
scenarios this simple model fails to deal properly with additional factors that contribute to
the imaging process, such as distortions introduced by lenses or misalignment of the optical
axis. In 1971 Brown [2] proposed a more sophisticated model that accounts for three radial
and two decentering distortion coefficients (respectively k1, k2, k3, ¢1 and ¢#2). While more
complex models exist (accounting for affine and shear transformations of the image plane),
the distortion coefficients introduced by Brown have shown to be adequate even for accurate
metrology applications. Most calibration methods exploit the correspondences between 3D
points of known geometry and 2D points on the image plane. Specifically, they seek a set
of model parameters (intrinsic calibration) and camera orientation with respect to the world
coordinate system (extrinsic calibration) that minimizes the distance from the measured 2D
points and their respective projections obtained by applying the calibrated camera model to
the 3D points (reprojection error). If the distortion parameters are not sought, it is possible to
solve the calibration problem by using simple linear techniques, such as those suggested by
Hall [5] and Faugeras [4]. Differently, it is necessary to introduce more complex approaches
that usually alternate a linear technique to optimize a subset of the parameters and an iterative
refinement step. One of the first calibration methods accounting for one radial distortion
coefficient was proposed by Tsai [14]. Later approaches by Zhang [15] and Heikkild [6]
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are able to deal respectively with two and three radial distortion coefficients; additionally,
the latter technique also estimates two coefficients of tangential distortion. The reader can
further refer to [11] for a comparative review of the most adopted calibration methods.

1.2 Targets and calibration patterns

All the cited calibration methods rely both on the precise knowledge of the calibration object
and on the accurate detection of its feature points on the image plane. The choice of an ap-
propriate calibration object is often a compromise between the calibration accuracy required
and the manufacturing complexity of the target itself. In general, 3D calibration objects (i.e.,
targets that are not composed of coplanar reference features) grant a more stable and precise
calibration. This is mainly due to the lack of coupling between intrinsic and extrinsic pa-
rameters with respect to the minimization of the reprojection error. In addition, the presence
of distinct depth information in the target limits the interplay between the estimation of the
focal length and the lens distortion. Unfortunately, accurate 3D targets are very difficult to
build, require an expensive tooling and need a remarkable amount of effort for maintenance
and verification. While it is possible to use even one-dimensional objects [16], planar cali-
bration targets are by far the most used both in experimental and industrial setups in virtue of
their ease of construction. In principle, a single view of a planar target is not enough to deter-
mine all the calibration parameters at once [13]. Nevertheless, by exploiting a well planned
network of independent views it is still possible to constrain the whole set of parameters and
obtain an accurate estimation of the camera model [10].

Regardless of the target geometry chosen, it is equally important to select an appropriate
feature pattern for the detection of the reference points. Zhang proposed to use a black
square on a white background [15]; while this is an easily detectable pattern, it is biased by
systematic localization errors caused by the inherent asimmetry of the marker (for instance,
directional bleeding due to illumination). To reduce those biases, a better choice is to adopt
symmetric markers such as circular points [6] or checkerboards [8]. Both these marker types
have shown to be detectable with high subpixel accuracy, but the checkerboard schema deals
better with the misplacement error introduced by radial distortion [9].

2 Camera calibration with inaccurate targets

Throughout the literature the calibration quality obtained by different authors, even when
using comparable techniques, is somewhat fluctuating. Given the complex nature of the im-
age acquisition process and the uncertainties of the target manufacturing, it is often difficult
to identify the exact sources of error and how they combine. The quality measure itself,
which is usually the reprojection error, is not always a correct indicator (in section 3.2 we
will show that it is possible to obtain a low reprojection error and still get a bad calibration).
In [3] Douxchamps suggests that a higher accuracy could be attained by increasing the to-
tal interface length of the markers themselves and thus enhance their localization. A very
in-depth theoretical analysis is validated by a large amount of experiments with synthetic im-
ages; however, real-world tests exhibit errors about an order of magnitude larger, which the
author explains in part with the non-planarity of the target and in part with optical artifacts
not corrected by the calibration model. Similar differences between results obtained with
synthetic and real images have been previously observed by Heikkild in [6]. While we agree
that this discrepancy can be attributed to imperfection of the target manufacturing, we argue
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(b)

Figure 2: Reprojection errors superimposed over the corresponding image point obtained
with a direct application of the calibration procedure with the theoretical checkerboard (a)
and with the more accurate estimated model (b).

that the non-planarity is not the main error source. Specifically, we built a planar target by
stitching a checkerboard printed on inextensible plotter paper onto a 6mm thick highly planar
float glass. Using this target we intrinsically calibrated a test camera with the Zhang method
and, beside studying the reprojection error with respect to image points, we also plotted the
same oriented error bars applied to the theoretical model of the checkerboard. The results
of this experiment are shown in Fig. 1. It is immediate to observe that the measurements
are not subject to an uniformly distributed error. From a general point of view this means
that the optimization was not able to fit the theoretical checkerboard model with a zero-mean
Gaussian error, which in turn highlights the presence of some systematic error source. Ba-
sically, this source can be correlated with three causes: a localization bias introduced by the
subpixel corner detector, the inability of the adopted camera model to fully capture the real
image formation model (namely lens distortions), or some unknown discrepancy between
the theorical checkerboard model and the printed one. We are not inclined to think that the
bias in corner detection is significant since, if this was the case, we should spot a higher
coherence in error orientations as all the corner features present roughly the same orienta-
tion, scale and illumination conditions (see Fig. 2). To rule out the deficiency of the camera
model we plotted the same error measurements on the image plane space (i.e., the camera
CCD sensor). By observing part (b) of Fig. 1 it is quite evident that the error distribution
is isotropic and this is a strong indication that no systematic error is amendable by using a
more sophisticated camera model. Those considerations suggest that the printing process
itself could be inaccurate enough to represent a significant source of systematic error in the
calibration process. For this reason, we decided to investigate the nature of such printing
errors and to tailor a calibration procedure able to correct them. It should be noted that the
influence of printing error was already observed in literature. Recently Strobl [12] described
a similar scenario, albeit he suggested that the printing procedure introduces just two types
of systematic biases: an error in the global scale of the checkerboard and a non predictable
aspect ratio. While this simple formulation allows for an elegant calibration procedure that
introduces just two additional parameters, we think that it is not general enough. In fact,
the distribution of the error shown in Fig. 1 can not be justified by scale and aspect ratio
transformations. In order to deal with the most general scenario we propose to lift any direct
constraint on the target geometry and iteratively run a three-step procedure (see Fig. 3). In
the first step we assume to know precisely the calibration target and we perform a standard
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Algorithm 2.1: CALIBRATE CAMERA-TARGET(target,images, minError,maxlter)

originalTarget < target

repro jectionError <— +oo

currentlteration < 0

while repro jectionError > minError and currentlteration < maxiter

cameraParameters < calibrateCamera(target ,images)

do J TePTO jectionError < bundleAd just(target,cameraParameters,images)
target < hornAd just(target,originalTarget)
currentlteration+ +

return (cameraParameters)

Figure 3: The simple, yet effective, algorithm proposed to iteratively estimate the intrinsic
camera calibration and the real target geometry.

calibration procedure with the currently trustable target model. Once plausible camera pa-
rameters are obtained, we assume them to be correct and we evaluate a more accurate target
geometry by using a bundle adjustment technique to estimate only camera poses and scene
(i.e. target). At this point a further step is needed, specifically we need to rescale the newly
created target to fit the original one. This is necessary since the bundle adjustment step does
not guarantee scale invariance. This adjustment step is performed by using the robust closed
form point set alignment technique by Horn [7]. The procedure is stopped when the repro-
jection error falls below a fixed threshold or a maximum number of iterations is reached.
Note that since the estimated target is scaled towards the theoretical one at each step, the
final camera calibration could be subject to an absolute scaling error that is not avoidable as
the real measures of the target are not known. Still, this error is averaged over the printing
error of each corner and in practice this has shown to be very small (see Sec. 3).

3 Experimental results

We performed all of our experiments using a pair of Basler Scout scA1300-32gc Gigabit Eth-
ernet monochrome cameras with a resolution of 1280 x 960 pixels. We printed our checker-
board pattern with one laser and two different inkjet printers. Some rudimentary dimensional
controls, made with a millimeter accurate ruler, showed that the laser printer is surprisingly
inaccurate as it produces prints that suffer from a global error (measured between the first
and last check of the A4 page) from one to three millimeters. This error was also very vari-
able between subsequent prints and also the aspect ratio was not repeatable (as previously
observed by Strobl [12]). The inkjet printers were more accurate, showing printing errors
greatly below the measurement threshold of the ruler (i.e. sub-millimeter) both with respect
to the global checkerboard size and its aspect ratio. Thus, we decided to build our test target
by printing a large checkerboard on an inextensible A3 plotter sheet with the inkjet printer
we felt to be more precise, and to stitch it on a thick planar glass with all the needed care to
guarantee the best possible adhesion. The camera calibration step was performed by using


Citation
Citation
{Horn} 1987

Citation
Citation
{Strobl and Hirzinger} 2008


6 ALBARELLI, RODOLA, TORSELLO: ROBUST CAMERA CALIBRATION

689 — — — T 500.4 —— T — T
principal point X coordinate principal point Y coordinate
500.35 -
% 6888 [ S —
0 S 5003 |
kS 3
= =
X 6886 S 50025
5 S s002f
< 6884 =3
K - T 50015 i
g g — |
£ £ 5001 F 1
S 6882 s
500.05 -
688 L . . . . . . 500 L . . . . . .
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
Iteration Iteration
(a) (b)
1613.6 — - - - - - - 0.00016 - -
f—— 1 ——
1613.4 1 £ 000014 2
1613.2 |\ € 000012 |
o
1613 2 0.0001
2 5
£ 16128 | g 8e-05 - 1
= g
= 16126 | b 6e-05 \/ 1
s |
1612.4 S 4e-05 -
2
1612.2 L s 2e-05 |
1612 L . . . . . . 0
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
Iteration Iteration
-0.183 - 0.205 -
kL —— k2 ——
o oasss o 02045 ¢
X e B X
= = 0.204
3 -0.184 ] 0.2035 -
] ]
8 -0.1845 | g 0208y
5 5 02025
g 018y £ o202
2 2
S 01855 S 02015
g g ozo1f
S 0186 | 8
0.2005 -
0.1865 L . . . . . . 02 L . . . . . .
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
Iteration Iteration
(e ®

Figure 4: Convergence of both internal and distortion parameters with respect to subsequent
iterations of our method.

the OpenCV [1] library, which implements the Zhang [15] method and allows to estimate,
by non-linear optimization, three radial and two tangential distortion parameters. In our ex-
periments we estimated only two radial distortion parameters since the used lens set was
not wide-angle and a preliminary set of experiments showed that the third parameter was
both irrelevant and unstable. Further, we fixed the camera aspect ratio to 1 (i.e. fx=fy), as
guaranteed by the manufacturer. To perform the bundle adjustment a suitable sparse imple-
mentation of the Levenberg-Marquardt optimization algorithm was used. For each camera
we took a set of 200 shots of the target: 100 shots were taken with small angles between
the target and the optical axis (from O to 15 degrees), while the others exhibit a larger range
of orientations (up to 30 degrees). These two sets have been used to study the influence of
the target orientation in both the quality of the calibration and the reprojection error measure
(see Sec. 3.2). Finally, the two cameras were mounted on a rigid support to form a stereo
pair which was used to shot another set of 100 images of the same checkerboard, and thus
perform a stereo calibration and target reconstruction as an additional validation step.
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Figure 5: Convergence of both reprojection error (a) and distance of the estimated calibra-
tion object with respect to the theoretical checkerboard (b) for subsequent iterations of the
proposed method.

3.1 Effects of target estimation on camera calibration

In our first set of experiments we analyzed the convergence behaviour of the proposed algo-
rithm. This was done by applying the calibration technique to the full set of shots taken by
the first camera. By observing the plots presented in Fig. 4, we can see that the position
of the principal point (plots a and b) changes significantly during the first 8 iterations. In
particular, its horizontal location moves by almost 1 pixel. In general, with a good quality
calibration setup, this value is expected to be recovered with at most some fraction of pixel
of estimation error.

We observe a similar behaviour for the focal length (plot ¢), which moves away from
the initial approximation by more than 1 pixel. In the last three graphs of Fig. 4 we see the
distortion parameters variation. Again, the distances from the first rough estimate are similar
in percentage to those observed for the internal parameters.

To give an idea of how these variations relate with the reprojection error, in Fig. 5 we
reported the RMS between observed and reprojected points for the same iterations shown in
part (a) of Fig. 4. It is interesting to note that the reprojection error dramatically decreases
after just one iteration, then it becomes quite stable and after as few as 4 iterations it seems
to have reached convergence. Indeed, this does not correspond to the behaviour observed
for the camera parameters, which continues to move after 4 iterations. We think that this is
due both to the misleading nature of the reprojection error (which we discuss in Sec. 3.2)
and to the fact that most of such initial large error is to be attributed to the very rough first
approximation of the checkerboard model.

To better explain the interplay between the estimation of the “true” calibration target
and the associated error reduction, we plotted (in part (b) of Fig. 4) the RMS error between
the corresponding points of the theoretical and estimated target. We can see that the target
estimation process requires a few more steps to stabilize, albeit the most significant variation
happens during the first few bundle adjustments. The final distance from the theoretical
model settles around one-tenth of a millimeter, which is compatible with the qualitative
observation obtained by using a physical ruler. While this error magnitude can be considered
small for a normal printing operation, it can be cumbersome when seeking for an accurate
calibration, especially considering that high-quality specifically crafted industrial calibration
targets guarantee a location error below one-hundredth or one-thousandth of a millimeter.
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Figure 6: Reprojection error (magnified by a factor 100) with respect to the model points
(a) and the sensor plane (b) after our method comes to convergence.

In Fig. 6 we finally show the distribution of the reprojection error with respect to (a)
the target points, and (b) the image plane after the application of the proposed calibration
method. This figure is meant to be directly compared with Fig. 1. Regarding the measured
error applied to the target points, the large reduction in magnitude is very noticeable. In
addition, the error sticks appear to exhibit an isotropic distribution. This suggests that most
of the systematic error has been eliminated and only Gaussian noise (due to image noise and
corner detection) is measured.

3.2 Validation of the calibration by stereo triangulation

The reprojection error obtained in Sec. 3.1 is below one-tenth of pixel. While this is not a
bad result overall, it is a bit large with respect to common values declared in literature by
recent methods, which usually reach a reprojection error as low as 0.05 pixels even using
self-printed targets. To better understand the relation between the reprojection error and the
calibration accuracy we performed and independent check based on stereo reconstruction.
We calibrated a pair of cameras with the described technique and then we fixed them to a
rigid bar and calibrated the stereo rig using a new set of stereo shots and the target geometry
previously learnt. Since the correct geometry was assumed to be known, this latter step was
performed simply by using the appropriate stereo calibration function of the OpenCV library.
The stereo calibration was then used to recover, in the 3D space and for each stereo shot, the
position of two checkerboard corners that are 10 cm apart. Our idea is that by analyzing
the measured distance between the reference points under different conditions, we should be
able to assess the overall quality of the two camera calibrations and of the target estimation
(as the “learnt” target is used to perform the stereo step). Specifically, we tested three cali-
bration setups: the first is meant to be a comparison with standard calibration techniques and
thus uses only the theoretical checkerboard, the second uses the estimated target and all the
images, finally the last setup uses only a reduced set of images that feature angles with the
optical axis lower than 15 degrees. In Fig. 7 we present a scatter plot of the different mea-
sures obtained with the three setups described. Since the target is moved among the stereo
shots, we reconstructed the pair of control points in different positions in space. Of course,
the better the calibration is the more consistent is the measure between different shots, since
if the calibration were perfect, the only measure error would be due to the subpixel corner
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Figure 7: Verification of the calibration quality by means of a stereo measuring check (see
the text for details).

localization. We can observe that by using our method with all the shots (thus with angles
up to 30 degrees) we obtain the most reliable results: the measure has the lowest variance
and it is quite uniform throughout the depth of the view field. By contrast, using the reduced
set of images (those that are more fronto-parallel) not only leads to a larger variance, but in
addition a clear gradient appears in the scatter plot; that is, the measure tends to decrease as
the target gets far from the stereo pair. This effect is probably due to the fact that images
with weak angulation are not able to fully constrain all the calibration parameters, especially
the extrinsic ones (i.e. camera poses). As expected, when not estimating the target model
we obtain a larger variance, albeit we do not get any gradient along the z coordinate as we
use the full set of images. Note that the average in not exactly 10 cm even for the best tech-
nique: this is to be expected, as the real distance is not known and we just know that the two
reference points are separated by 10 squares allegedly long 1 cm in the print. In table (b) of
Fig. 7 we show the different reprojection errors attained by the three setups. We can see that,
notwithstanding the large average measurement error, the setup that uses the fronto-parallel
images obtains a very low reprojection error. This apparent nonsense is indeed due to the
lower error introduced by the corner detector as, when the model is correctly estimated, this
zero-mean Gaussian error does not hinder a correct camera calibration, yet it contributes to
the magnitude of the reprojection RMS error. On the other hand, the use of weakly angulated
images poses less constraints to parameters and thus leads to both a less accurate mono cal-
ibration and stereo reconstruction. In this sense, the reprojection error is not always a good
indicator since, when the calibration setup is good, it tends to be dominated by localization
eITors.

4 Conclusions

In this paper we introduced a very simple but effective method to precisely calibrate a cam-
era with a cheap self-built target. While this approach is not meant to substitute the use of
professional-made calibration objects, it is very useful since printed targets are still widely
used both by researchers and practitioners. The effects of an accurate learning of the real
target geometry are shown with a set of experiments that explore both the convergence be-
haviour of the algorithm and the quality of the obtained calibration.
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