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Abstract: Some robots driven by muscle-type actuators have been studied based on a bio-inspired approach. However,

a method of motion generation for them has not been established. We propose a control method based on a human

electromyogram (EMG) for a musculoskeletal robot with mono- and bi-articular muscles. The simulation results show

that the method is more effective than non-EMG-based method. In a dynamic simulator, we demonstrate that the method

can generate feasible motor command for bipedal running with complex musculoskeletal system.
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1. INTRODUCTION
In order to improve a physical ability of legged robot,

musculoskeletal structure of animal is the useful ref-

erence. A musculoskeletal system has many interest-

ing characteristics, such as the free control of stiffness

through antagonistic actuation and bi-articular muscles

contributes to the isotropy of the force distribution.

On the other hand, because running is acknowledged

to be an especially challenging task, many robots have

been developed that can run. Despite having this abil-

ity, these robots have not used the findings of animals

enough. Therefore, musculoskeletal robots have been de-

veloped. Lucy [1] has pneumatic muscles and is capable

of planar walking. However, with only mono-articular

muscles and control similar to angle control, this robot

cannot make the best use of the characteristics of the mus-

culoskeletal system. Although musculoskeletal robots

with bi-articular pneumatic muscles are able to run [2],

this is manually tuned. Briefly, the control method of

musculoskeletal robot has not been established.

Thus, we propose a bio-inspired control method. We

demonstrate the bipedal running with musculoskeletal

robot with bi-articular muscles in a dynamic simulator.

2. ATHLETE ROBOT
We used a model of the Athlete Robot [2](Fig. 1),

which weighs about 10 kg and has a body height, thigh

length, and shank length of 1.2 m, 0.3 m, and 0.36 m, re-

spectively. This robot is driven with pneumatic artificial

muscles. We used OpenHRP3 [3] as the dynamic simu-

lator. The kinetic data for the robot were taken from 3D-
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Fig. 1 Athlete Robot with layouts of its muscles.

CAD data. We used the theoretical equation of tension of

the pneumatic muscle shown in (1) [4].

F = p{A(1 − ε)2 − B}, (1)

where F , p, and ε denote the contraction force, inner pres-

sure, and contracting ratio, respectively, and A and B are

constants.

3. CONTROL
In the legged locomotion, contact force control is more

important than angle control. Contact force distribution is

determined according to which combination of muscles is

chosen. Therefore, an appropriate control of muscle acti-

vation strength is required. In deciding muscle activation

strength, it is valid to use electromyogram (EMG), corre-

sponding to muscle activation strength of humans.

Thus, we propose muscle activation pattern control

based on a human EMG. This control consists of mus-

cle activation patterns using a simple step function as the

basis function and the learning thereof. To make learning

efficient, we use a human EMG data (Fig. 2). In addition,

we estimate the switching time since timing is especially

important for dynamic movement.

We divide a period of running into two phases because

of the difference of dynamics, namely, the thrust phase

and the swing phase. Setting the threshold to half the

maximum strength of the EMG, we can divide the swing

phase into two phases, namely the recovery swing phase

and the foot descent phase, and determine simplified pat-

terns (an example of IL is shown in Fig. 2). Details of

the muscle activation patterns for each phase and certain

parameters concerning switching time are decided by a

combination of constrained random sampling and hill-
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Fig. 2 EMG [5] and muscle activation pattern.
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climbing optimization. In constrained random sampling,

we fix the pressure of decided non-activation muscles to

zero, and randomly explore the pressures of decided acti-

vation muscles and a few parameters for switching time.

In hill-climbung optimization, we optimize all the param-

eters. Additionally, we decide the switching time of the

next cycle using information from the previous cycle and

the prediction at liftoff time. The duration of each phase

is decided at the moment of liftoff.

4. SIMULATION EXPERIMENTS
4.1 Experimental Settings

We performed a bipedal running in a simulator. To

make the robot learn a steady running motion, we pro-

vided an initial velocity. To begin, we issued the initial

commands for 3.7 s to bring the robot to its starting pos-

ture. Next, we applied force from behind for 0.3 s to give

the robot an initial velocity of 2.0 m/s. The evaluation

metric used is the distance before falling down. The pa-

rameters of the control are the muscle activation strength

of seven muscles shown in Fig. 1 in the three phases, the

ending time of the initial posture (tinit), and the ratio of

the foot descent phase to the whole swing phase (τ ).

4.2 Comparison between EMG-based Sampling and
Non EMG-based Sampling

We conducted constrained random sampling based on

a human EMG to determine general parameters of the

control. The numbers of learning parameters were 11

or 12 (excluding Gmin and ADD of all phases and non-

activated muscles decided by a human EMG). Having

conducted 300 trials by four ways (using EMG of [5] or

[6] or [7] with IL of [5] or [7] with IL of [6]), respec-

tively, we obtained several combinations of parameters

that realized several steps of running.

We also experimented with non EMG-based sampling

to verify the effect of EMG-based sampling. The num-

bers of learning parameters were 10 or 11 or 12 (exclud-

ing Gmin, ADD, and 5 or 6 or 7 randomly-selected pa-

rameters). We have conducted 300 trials by four different

parameters, respectively. From the results, the average

distances were 2.24 m and 1.99 m, with variances of 1.38

and 0.07, for the experiments with EMG-based sampling

and non EMG-based method, respectively (Fig. 3). Thus,

EMG-based sampling is more advantageous to find gen-

eral parameters of the running motion.

4.3 Optimization of Running Motion
We conducted hill-climbing optimization of five high

ranking parameters obtained from each constrained ran-

dom samplings. The number of learning parameters is

23 (all the parameters). Based on the results of 150 tri-

als, the evaluation metric increased greatly and the robot

successfully realized a running motion from EMG-based

samplings (Fig. 3). Thus, EMG-based sampling is effec-

tive to achieve a running motion. The optimal parameters

are shown in Fig. 4. The mean velocity of the robot was

2.1 m/s, and it took 13 steps in 12.5 m (Fig. 4). As can be

seen from the graph, the running pace is steady.
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Fig. 3 Distribution of evaluation metric for random sam-

pling (left) and the mean learning curve with standard

deviation for hill-climbing optimization (right).
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Fig. 4 Optimal parameters (left) and displacement of the

robot during running (right).

5. CONCLUSION
In this study, we proposed a method to implement run-

ning in a musculoskeletal bipedal robot, and examined

the running motion of a robot in a dynamic simulator.

We used muscle activation pattern control in the learning

based on a human EMG. Using hill-climbing optimiza-

tion after EMG-based constrained random sampling, the

robot model achieved 13 steps running. The mean dis-

tance before falling down in EMG-based method is about

three times greater than that in non-EMG-based method.

This result shows that an EMG-based search is efficient

for finding appropriate patterns. Future works include the

use of posture feedback for infinite running and applica-

tion of this method to a real robot.
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