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Abstract— The multisensory representation of our body
(body schema), and its conscious and manipulable counterpart
(body image) play a pivotal role in the development and
expression of many higher level cognitive functions, such as
tool use, imitation, spatial perception, and self-awareness. This
paper addresses the issue of how the body schema changes
as a result of tool use-dependent experience. Although it is
plausible to assume that such an alteration is inevitable,
the mechanisms underlying such plasticity have yet to be
clarified. To tackle the problem, we propose a novel model of
body schema adaptation which we instantiate in a tool using
robot. Our experimental results confirm the validity of our
model. They also show that timing is a particularly important
feature of our model because it supports the integration of
visual, tactile, and proprioceptive sensory information. We
hope that the approach exposed in this study will allow to
gain further insights into the development of tool use skills
and its relationship to body schema plasticity.

Index Terms— Adaptive body schema, Extensible body im-
age, Tool-using robot, Time-domain visual-tactile integration,
Developmental robotics

I. INTRODUCTION

Robots intended to interact with human beings require
high-level cognitive capabilities. In humans (as well as
other animals) many of those capabilities are based on
an internal representation of the body. Two distinct and
complementary definitions of such representation exist [1]:
(a) the body schema, that is, an unconscious neural map
of the spatial relations among the parts of the body,
in which multi-modal sensory information (e.g. visual,
somatosensory, and tactile) is integrated [2], [3]; and (b) the
body image, a consciously manipulable and body-centered
version of the body schema [4]. In this paper, we will
mainly consider the first definition.

Many fundamental abilities rely on the availability of a
representation of the body. Humans, for instance, imitate
other people’s actions by projecting the observed behavior
onto their own bodily possibilities. This process occurs at
an unconscious level, and is known as “transfer” of the
body schema [5]. Representations of the body also relate
to the subject’s perceptual experience of her/his own body
(self-awareness), and of her/his conceptual understanding
of the body in general [6]. Interestingly, the functional
requirement for a body schema extends even beyond the
boundary set by our body. To guide movements through
space, for instance, the brain must constantly monitor

limb position and body movement in relation to objects
contained in the body’s peripersonal space (that is, the
space immediately surrounding the body) [7]. In addition,
the sensory information from the peripersonal space is not
only visual and auditory but also tactile and proprioceptive
[3]. It follows that also spatial perception relies on the
body schema. A similar state of things holds for tool
use. Neurophysiological evidence shows that by repeatedly
using a tool, changes in the body representations (of
humans and trained monkeys) occur, and over time the
tool is felt as being an integral part of the body. The
phenomenon describing the extension of the body image
(or the body schema for that matter) to incorporate non-
corporeal objects, such as tools, has been reported in the
literature and is known as body image or body schema
extension [8].

The core assumption of the work presented here is that
the body schema plays a significant role in construct-
ing a robotic system capable of realizing the aforemen-
tioned higher-level functionalities. Unfortunately, to date
the mechanisms underlying body schema acquisition and
plasticity are not yet completely understood. In this paper,
we tackle the problem by addressing it through the lens of
developmental robotics [9]. Our approach is synthetic: we
first attempt to extract principles from neurophysiological
and neuropsychological findings, and then employ those
principles to realize higher level functionalities in artificial
systems. The principle used in this paper is unconventional
and relies on the concept of causality: the body represen-
tation (here: body schema) of the actor (trained monkey,
human subject, or robot) extends if the temporal causal
relationship among the sensory modalities matches a rela-
tionship the actor has previously experienced before. The
high-level function studied is tool use. We hypothesize that
because tool use typically improves object manipulation
abilities, the effect of body schema alteration will be easier
to detect and understand.

In the following sections, we first briefly describe the
notion of body schema. We then present a novel model of
body schema adaptation, and instantiate it in a real robot
which has to learn to use a tool. We present some results
confirming the validity of our approach. Before concluding,
we discuss how our model may be useful to understand how
tools are actually incorporated into the body schema of an
actor interacting with its local environment.



II. PERSPECTIVES ON BODY SCHEMA

In this section, we present a view on the body schema
which relies on findings from the areas of neurophysiol-
ogy and neuropsychology. We then briefly survey some
previous research applying the concept of body schema to
robots.

A. Body schema and phantoms

The term body schema was initially introduced by Head
and Holmes [2] to describe (a) the mapping from propri-
oception and efferent copy (copy of motor command) to
body posture and motion, and (b) the mapping from tactile
sensation to its originating position on the body surface. We
call this original concept the “geometric body schema.” The
concept of body schema has been substantially enriched by
the discovery of the phenomenon of phantom limbs [10].
The phenomenon can be observed in amputees who find
themselves feeling somatic sensations (such as pain, tickle,
or itch) originating from their amputated (that is, inexistent)
phantom limbs. Interestingly, a subsequent study showed
that phantom limbs do not occur in case of congenitally
missing limbs [11]. One possible implication of these facts
is that the body schema is (a) formed during development
(hence the absence of phantoms in people born without
a limb), and (b) static once acquired. Indeed, throughout
development, we experience a flood of multisensory infor-
mation, and the body schema might simply be the result
of how sensory feedback is organized and integrated.

B. Body schema and plasticity

Recent studies shed new light on the concept of body
schema. Phantom limbs, for instance, can be treated with
mirrors which give amputees relief from the disturbing
presence of the lost limb [12]. This phenomenon demon-
strates that the body schema is alterable even in adults.
The rationalization of the discrepancy between visual and
phantom somatosensory information induces them to “ac-
cept” to the new body. As a consequence of this recent
body of work, the body schema is nowadays considered
being plastic and constantly updated by sensory feedback
(e.g. [13]). Iriki et al. reported the existence of a class
of bimodal neurons in the monkey’s intraparietal cortex
activated by somatosensory and visual stimuli from the
monkey’s hand [8]. They were able to show that a visual
stimulus approaching the tip of a rake was sufficient to
activate the bimodal neurons of monkeys trained to retrieve
distant objects using that tool. This finding confirms the
hypothesis that the body schema actually extends to incor-
porate tools and other objects.

Some other remarkable examples of body schema exten-
sion are described in the literature. An example is schemat-
ically represented in Fig.1 (see also [14]). In this particular
experiment, a subject sits in front of a table with his/her
hands hidden under the table. Now, the experimenter si-
multaneously either strikes or taps the subject’s hand and
an unreachable point on the table. After a minute or so, the
subject starts feeling a stroke on his/her hand as thought
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Fig. 1. Schematic representation of the phenomenon of body image
extension. If the taps and strokes are simultaneous, then the subject feels
the table as being part of her/his body.

it emanates from the point on the table (despite the table
being inanimate). This phenomenon is a striking example
of “body image extension” and the table is consciously
thought to be part of the body. The study provides yet more
evidence that body representations such as body schema
and body image are plastic and easily alterable (even in
adults).

C. Body schema and robots

The concept of the body schema is closely related to
modeling techniques adopted in traditional robotics. Simi-
lar to the geometric body schema, conventional kinematic
and kinetic models of the body of the robot are static
and geometric. In addition, in robotics, geometric trans-
formations are used to combine different kinds of sensory
information: visual and proprioceptive [15], or visual and
auditory [16]. By contrast to the conventional approach,
some recent research has also attempted to construct plastic
body schema in robots. Yoshikawa, for instance, proposed
an adaptive body schema acquisition system which uses
vision to detect regions of space occupied by the body and
to learn a map of the body [17]. Stoytchev constructed
a model of body schema extension, and by assuming
that it is possible to detect a change of the body, he
proposed a method to automatically adapt the kinematic
controller [18]. Another related piece of work is the one
by Fitzpatrick and Metta who constructed a machine vision
system capable of extracting a region of the arm by simply
touching an external object [19].

Despite these modeling efforts sort of break with the
traditional approach, they neither realize a biologically
plausible mechanism of body schema supporting high-level
functions, nor do they provide any satisfying explanation
of “body image extension.” We address both issues in this
paper.

III. ADAPTIVE MODEL OF BODY SCHEMA

In this section, we introduce a novel model of body
schema adaptation which relies on the integration in space
and in time of constantly updated multisensory information.

A. Timing-based model

As already stated in Section II-B, the body schema is
not static but changes plastically. Here, we review the phe-
nomenon of “body image extension” (Fig.1), and propose
a mechanistic model for it. In this particular phenomenon,
the spatio-temporal patterns of visual and tactile sensory
activity induce the brain to “think” that the table is a new



part of the body (an extension). Based on this finding, it is
possible to derive a model for body schema extension.

A first assumption is that visual and tactile information
are integrated in time and in space. Indeed, visual and
tactile sensations are temporally integrated because they
are causally related. Moving the hand to approach a target
represents the cause, and the tactile sensation (contact)
the corresponding effect. This means that by converting
visual information (available during the approach phase)
into tactile information (resulting from the contact with
the target object), it is possible to predict the cause of a
possible action. Moreover, tactile and visual information
are also spatially integrated: visual “contact” (that is,
overlap of hand and target object) and tactile contact occur
on the same point on the body. The two modalities are
integrated and unified by the event “contact.” The second
assumption is that the unity of integration is stored in an
associative memory so that if one modality is active, the
other is also activated. For instance, only if the temporal
causality concerning “contact” is the same as the causality
experienced, are the two locations from which visual and
tactile “contact” information originate regarded as the same
location.

B. Tool use model with plastic body schema

We enhance our model of body schema adaptation to
include adaptive tool use. The information flow through our
model is depicted in Fig.2. This model enables a robot to
reach and touch a target with a tool as though the tool is the
robot’s hand. Note that knowledge about the tool is a priori
unavailable, and the robot autonomously incorporates the
tool and learns to use it.

In order to reach the target with its hand, the robot
executed the following steps: The robot (a) generates paths
from locations of its hand rV

h and a target rV
t , (b) internally

simulates the paths and selects an executable one using the
kinematic controller of its hand, (c) actually moves the
hand along the path using the controller, and (d) reaches
and touches the target. The temporal visual information
rV

h and tactile patterns ST obtained here are learned in
an associative memory, which works as a time-domain
integrator.

When the robot holds and swings a stick, and acciden-
tally hits a target with its tip, it obtains touch sensation
ST relayed by the stick and visual location of the stick
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Fig. 2. Model of body schema extension applied to tool use task.

rV
s . When this ST is fed to the associative memory, the

associative memory recalls the learned visual pattern r̃V
h .

Then, r̃V
h is compared with rV

s . A similarity between
the two patterns invokes spatial rationalization—rV

s where
visual “contact” occurs is regarded as the location where
ST comes, that is, rT .

By using this strategy, the robot can determine which
controller should be adapted to use the stick (here, the
controller of the hand corresponds to that), and to learn
the extensional controller using visual information rV

s and
the efferent copy δθ. After learning, the robot is able to
use the tool in the same manner as the hand: in the case of
the tool, it can generate paths, internally simulate the paths
and move the tool along an executable path trajectory. We
can say that the stick (that is, the tool) has become part of
the body.

IV. IMPLEMENTATION

In this section, we describe our experimental setup and
the implementational details of our model.

A. Experimental setup

The robot used in our experiments was equipped with
one camera, two touch sensors (located in its hand), and a
two-link manipulator constrained to move in a plane. The
tool is an extension of the distal link of the manipulator.
The information entering the system was the following: (a)
tactile information ST is the signal pattern originating from
the touch sensors; (b) visual information consists of the
planar positions of the robot’s hand rV

h , the tip of a stick rV
s

or a target object rV
t ; and (c) proprioceptive information θ

is given by the joint angles.
We constructed a robotic system composed of the upper

body of a small-sized humanoid robot and a color CCD-
camera (Fig. 3). The hand of the robot held a stick, so that
a contact between the stick and a distant object activated
the switches in the hand’s palm. Note that the activation
of the switches was dependent on the target approach
direction. For the acquisition of the positions of limbs
and objects on the plane and in order to pre-calibrate
the camera-centered coordinate system, we used a set of
perspective images collected with the CCD-camera before
performing the actual experiments. The Jacobian matrix
and the forward kinematic equations were given only for
the hand.

Fig. 3. Left: Robot used in our experiments. Right: Snapshots of reaching
experiment.



B. Design of spatio-temporal associative memory

The associative memory required by our model is vi-
sualized in Fig.4. It consisted of the combination of two
associative memories: (a) a gating neural network (GNN)
which associated visually detected target approach direc-
tion with tactile information, and (b) a nonmonotone neural
network (NNN) [20] which temporally associated tactile
signals with a visual distance between the hand and a target.
Both networks were essentially augmented Hopfield neural
networks.

The GNN had twelve neurons whose activation function
was,

yi = sgn(
�

j

wijyj + zi − µ) (1)

where yi is the output of neuron i, zi the input to neuron i,
wij the connection weights from neuron j to neuron i, µ a
given threshold, and sgn(x) returns +1 or −1 according to
the sign of its argument x. The GNN obeyed an augmented
Hebbian learning rule [21]:

wij = wij + yi(yj − yiwij) (2)

As shown in Fig.4 (middle), the tactile feedback S T

was fed to two neurons. The approaching direction φ of
two objects was weighed by ten Gaussian kernels fully
connected to each other. The purpose of the GNN was to
associate tactile sensory channels with visual information
about the object approach directions.

The outputs of the tactile neurons of the GNN were
eventually summed according to:

p =
�

t

�
i∈tactile

yi · ∆t (3)

where p is the sum of the output neurons of the GNN. Note
that the purpose of this sum is to transform tactile patterns
ST into a wave form with a slope, reason being that it is
easier for the NNN to learn patterns containing slopes.

The NNN was composed of 40 neurons. As shown
in Fig.4 (bottom), 20 neurons of the NNN coded for
the distance d(t) of the two objects, whereas the other
20 neurons coded for the tactile pattern p(t). Both were
weighed by twenty Gaussian kernels in the same way as φ.
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Fig. 4. Visuo-tactile associative memory for spatio-temporal patterns. The
memory consists of a gating neural network (GNN) and a nonmonotone
neural network (NNN).

The dynamics of the NNN was governed by the following
set of equations:

τ
dui

dt
= −ui +

�
j

wijyj + zi (4)

yi = f(ui) (5)

f(x) =
(1.0 − e−cx)(1.0 + κec′(|x|−h))

(1.0 + e−cx)(1.0 + ec′(|x|−h))
(6)

where τ is an update time constant, ui the internal potential
of a neuron i, wij the connecting weight from a neuron j
to a neuron i, zi the external input to neuron i, and y i the
output of neuron i calculated by a nonmonotone output
function (6). The learning rule of the NNN was,

τ ′ dwij

dt
= −wij + αγiyi (7)

τ ′ being the learning time constant, α the learning co-
efficient, and γi the learning signal for a neuron i. We
determined α = α′xiyi with a constant α′ and zi = λγi

in the same way as described in the original paper by
Morita [20]. For all neurons λ was constant throughout
the learning phase in order to realize a bi-directional
associative memory.

These coupled networks could effectively learn the
association among spatio-temporal patterns. Because of
Hebbian-like learning, the tactile and visual patterns were
just fed to the networks during the learning phase. Due
to its associative capabilities, when one modality was fed
to the system, the pattern of the other modality could be
recalled.

C. Design of kinematics learning

In our experiments the tool was a stick attached to the
distal link of the arm of the robot. Our system successfully
learned a kinematic controller for tool use. The relation of
joint angles θ and the position of the end effector r were
given by:

δ� = �(�)δ� (8)

�(θ) =

� −l1s1 − l2s12 −l2s12

l1c1 + l2c12 l2c12

�
(9)

where J is a Jacobian matrix, lj (j = 1, 2) is the length
of link i, s1 is sin θ1, c1 is cos θ1, s12 is sin(θ1 + θ2), and
c12 is cos(θ1 + θ2).

The following equations were applied to the tip of the
hand and of a stick:

δ�h = �h(�)δ� (10)

δ�s = �s(�)δ� (11)

where rh and Jh are the position and the Jacobian matrix
of the hand, and rs and J s are those of the stick.

Note that the only difference between hand and stick
was their length. Having a stick turns J h with a constant
matrix J c,

�s(�) = �h(�)�c (12)



It is almost trivial for Jacobian matrices of the form (9).
Equation (12) means that a robot can use a stick with a
brief transformation. Here, we substitute (12) into (11) and
rearrange the equation with J h(θ[t]) and the displacement
δrs[t] made by an actual motion δθ[t],

Θ′ = �cΘ (13)

�c = Θ′Θ+ (14)

Θ′ =
�

(�−1
h (�)δ�s)[t] (�−1

h (�)δ�s)[t + 1] . . .
�

(15)

Θ =
�

δ�[t] δ�[t + 1] . . .
�

(16)

with + is the pseudo-inverse symbol.
These equations indicate that the constant matrix J c

is learnable through experience and should be relatively
easy to converge to because it is linear and constant.
We implemented the incremental learning of this matrix
with a vanilla-type two-layered perceptron whose input
and output were J−1

h (θ)δrs and δθ respectively. This
perceptron worked as the extensional transformation J −1

c

for the controller of the hand J −1
h .

V. EXPERIMENTS

In our experiments, the robot reached and touched a
target with its hand, and consequently experienced multi-
modal sensory information. Such information was inte-
grated spatially and temporally. If the robot accidentally hit
a target and the resulting sensory feedback was temporally
consistent with the stored integration, the robotic system
became ”aware” of the extension of its hand and began
learning an extensional controller for the stick. After a
while, the robot learned to use the stick as a tool in the
same manner as its hand.

To generate the reaching movements, we used quadratic
Bezier curves describing the path connecting hand and
target. The curves reached the target by approaching the
it from four different directions (60, 90, 240, 270 degree).
The robot internally simulated those movements, chose
a possible motion in the condition of joint limit, and
then eventually executed the movement as shown in Fig.3
(right). The expression of this behavior led a set of visual-
tactile patterns: the cases of 90 and 270 degree are shown
in 5 (left), whereas the case of 60 and 240 degree are
displayed in Fig. 5 (right). The top of the figure is the
distance d between the target and the hand. Each waveform
shows an attempt to approach the target. The second top is
the direction φ from which the hand approaches the target.
The two bottoms are the response patterns of tactile sensors
A and B located in the palm of the hand. The patterns were
aligned in time so that the time of contact was 0 [msec].
Because the visual patterns were cluttered after contact,
they were delayed by 1500 [msec], and then fed as learning
signals to the augmented associative memory. The NNN
updated its activation patterns until its state stabilized for
every input at each time step. The parameters of the NNN
are listed in Table I. Similarly, the GNN learned at every
time step the spatio-temporal patterns of its input.

Next, we made the robot hold and swing a stick. When
the robot accidentally hit the target with the tip of the stick,
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it obtained concurrent tactile and visual information. The
consequent tactile activation patterns was then fed to the
associative memory, and the visual patterns d and φ were
extracted from the NNN through the GNN.

Two input and output patterns are shown in Fig.6. One
corresponds to the activation of one tactile sensor, whereas
the other relates to the activation of the other tactile sensor.
The recalled patterns were time-correlated with the visual
patterns obtained when the robot swang a stick and hit
the target. The temporal consistency and spatial difference
between the hand and the tip of the tool drove the system
to learn the Jacobian matrix transformation.

For adaptive learning of the controller, the robot moved
its joints individually (as shown in Fig. 7 (left) and Fig.
8), and the obtained visual patterns δrs as well as the
perceived movement δθ[t] were fed every 500 [msec] to
the perceptron 50 times with a learning coefficient D = 10.

The learning converged rapidly as depicted in Fig. 7
(right). Our results J c were in agreement with one sig-
nificant figure with the value theoretically calculated by

TABLE I

PARAMETERS FOR NONMONOTONE NEURAL NETWORK.
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Fig. 8. Experiment of inverse kinematics learning.
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(12) for a given J s.
Eventually, the robot learned to use the stick like the

hand with the learned transformation J c. As for the hand,
by using quadratic Bezier curves obtained from the hand
were used to generate reaching movements. The move-
ments were first simulated internally, and after chosing a
possible motion pattern, actually executed.

The simulated trajectories are reproduced in Fig. 9 left.
The lines ending halfway indicate rejection at the ending
points due to the joint limit. The lines that reach the target
give paths that can be used to perform a movement. The
robot was able to judge whether the target is reachable by
the hand or by the stick. Here, it could decide to use a tool
and execute one of the possible paths. The trajectories of
the hand and stick tip are depicted in the right of Fig. 9.
Because of the volume of the target object, this trajectory
ended in front of the center of the target when the stick
touched the target object.

VI. CONCLUSION

In this paper, we proposed a novel model of body schema
adaptation. Our model was inspired by neurophysiological
findings, in particular a phenomenon known as “body
image extension”, which has been observed in monkeys
and in humans. We tested our model by instantiating it in
a robot whose task was to learn to use a simple tool. Our
experimental results show that the model allows the robot
to extend its body schema to incorporate an external (extra-
corporeal) object through the time-domain integration of
multisensory information (tactile and visual). We conclude
that body schema adaptation might actually be a good
strategy to learn to use tools through actor-environment in-
teraction. Another conclusion is that a plastic body schema
is a necessary requirement for tool use skills to emerge,
and that the approach in which first a body schema is
constructed may have actual validity for achieving higher
level functions.

In line with the approach advocated by developmental

robotics, our model represents only the first step towards
the acquisition of a truly adaptive robotic body schema. If a
robot could acquire a body representation similar to ours,
then it might actually also develop high level cognitive
functions such as imitation [5], [6] or spatial perception
[7]. Future work will be mainly aimed at extending the
model proposed in this paper to include imitative learning.
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